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Introduction

What is this document?
This set of notes is designed to supply the course material for the course MA522 at North Carolina
State University. This document indicates all the contents of the course. You are strongly advised
to follow the content and instruction of these notes.

We aim to provide a first introduction to Computer Algebra. Computer algebra is a vast area
that borrows and interconnects ideas from several fields of mathematics and computer science.
However, we will focus on computations involving the solutions to systems of polynomial
equations; these solutions are called algebraic varieties. Therefore, this course can be seen as
a first introduction to computational ideas in Algebraic Geometry and Commutative Algebra.
Our main tool will be the notion of Gröbner bases and we will see how they reduce complicated
problems to questions relating monomial ideals. Consequently, we will spend some time studying
combinatorial properties of monomial ideals.

The following textbooks will be our primary resources:
– Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and

Commutative Algebra by David Cox, Donal O’Shea, and John Little ([3]).
– Monomial ideals by Jürgen Herzog and Takayuki Hibi ([5]).
– Using Algebraic Geometry by David Cox, Donal O’Shea, and John Little ([2]).
– Combinatorial commutative algebra by Ezra Miller and Bernd Sturmfels ([9]).
– A course in commutative algebra by Gregor Kemper ([6]).

Throughout this document we following the following conventions:
• N = {0,1,2, . . .} is the set of nonnegative integers.
• Z+ = {1,2, . . .} is the set of positive integers.
• k is a field.
• S= k[x1, . . . ,xn] is polynomial ring in n variables x1, . . . ,xn over the field k.
• [k] = {1, . . . ,k} for any k⩾ 1.
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CHAPTER 1

Polynomial rings, ideals and varieties

This chapter introduces the basic objects we shall study: polynomial rings, ideals and varieties.
In this chapter we essentially follow [3, Chapter 1].

1.1. Polynomial rings

Let k be a field and S= k[x1, . . . ,xn] be a polynomial ring. In most of our situations, the field
k will be:

(i) k = Q the field of rational numbers (a good field for computers to work).
(ii) k = R the field of real numbers (the field of real life).
(iii) k = C the field of complex numbers (our preferred algebraically closed field).

The underlying set of the ring S has the structure of a k-vector space. The basis elements are
the monomials.

Definition 1.1.1. A monomial in S is a product of the form

x
α1
1 · · ·xαn

where all of the exponents α1, . . . ,αn ∈ N are nonnegative integers. We shall abbreviate xα =
x
α1
1 · · ·xαnn with α= (α1, . . . ,αn) ∈ Nn. The (total) degree of this monomial is given by the sum

deg(xα) := |α| := α1 + · · ·+αn.

Then the elements in the polynomial ring S are the polynomials.

Definition 1.1.2. A polynomial f ∈ S is a finite linear combination (with coefficients in k)
of monomials. We will write a polynomial f in the form

f=
∑
α

cαx
α, cα ∈ k

where the sum is over a finite number of n-tuples α= (α1, . . . ,αn).

Definition 1.1.3. Let f=
∑
α cαx

α be a polynomial in S.

(i) We call cα the coefficient of the monomial xα.
(ii) If cα ̸= 0, then we call cαxα a term of f.
(iii) The (total) degree of f ̸= 0, denoted deg(f), is the maximum |α| such that the coefficient cα

is nonzero. The (total) degree of the zero polynomial is undefined.
2



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

(iv) If all the terms of f ̸= 0 have the same degree, then we say that f is a homogeneous
polynomial.

When the number of variables is small, we shall use the notation S = k[x], S = k[x,y] or
S= k[x,y,z].

Example 1.1.4. (i) 2x2 +17xy3z2 +5 is a polynomial in S= Q[x,y,z] of degree 6 and it
has 3 terms. But it is not homogeneous.

(ii) The polynomial 2x6 +17xy3z2 +5z6 is homogeneous of degree 6 in S= Q[x,y,z].

The polynomial ring has the following direct sum decomposition

S =
⊕
i⩾0

Si with Si :=
⊕
|α|=i

k ·xα.

In other words, Si is the vector space spanned by the monomials of degree i. With our con-
ventions above, notice that Si is the space of homogeneous polynomials of degree i. With this
decomposition by total degree, we say that S is a graded ring.

We are interested in the following object, which is the geometrical counter part of the
polynomial ring S= k[x1, . . . ,xn].

Definition 1.1.5. We define the n-dimensional affine space over k to be the set

Ank :=
{
(a1, . . . ,an) | a1, . . . ,an ∈ k

}
.

As a set Ank is just the n-dimensional k-vector space kn. But we write Ank to stress that we will
be employing the Zariski topology (which will be introduced later in Section 1.3).

Now our discussion begs the following question: what is the relation between the polynomial
ring S = k[x1, . . . ,xn] and the affine space Ank? Our answer will come from the fact that a
polynomial f ∈ S naturally gives function

f : kn→ k, a= (a1, . . . ,an) ∈ kn 7→ f(a1, . . . ,an) ∈ k,

by evaluating the polynomial f. We can describe algebraic geometry as the area of mathematics
that studies the set of zeroes of polynomial equations.

The following example shows that some care should be taken when working over a finite field.
We can have a nonzero polynomial that yields the zero function.

Example 1.1.6. Let p > 1 be a prime number, k = Z/pZ be the field of p elements and
S= k[x]. Consider the nonzero polynomial f(x) = xp−x ∈ S. By Fermat’s little theorem, we
have ap ≡ a(mod p) for all a ∈ Z. Therefore the function f : k → k, a ∈ k 7→ f(a) = ap−a

obtained by evaluating f is the zero function.

The following proposition shows this phenomenon does appear when the field k is infinite.
3
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CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

Proposition 1.1.7. Suppose k is an infinite field and f ∈ S= k[x1, . . . ,xn] is a polynomial.
Then f= 0 in S if and only if f : kn→ k is the zero function.

Before proving the proposition, we need the following basic result from linear algebra.

Lemma 1.1.8 (Vandermonde determinant). Let v1, . . . ,vm ∈ k be elements in k and consider
the following matrix

V = V(v1, . . . ,vm) :=



1 v1 v2
1 · · · vm−1

1
1 v2 v2

2 · · · vm−1
2

1 v3 v2
3 · · · vm−1

3
...

...
...

. . .
...

1 vm v2
m · · · vm−1

m


.

Then det(V) =
∏

1⩽i<j⩽m(vj−vi).

Proof. We proceed by induction on m. For m = 2, it is clear that det(V) = v2 −v1. Sub-
tracting to the j-column the (j−1)-column multiplied by v1, we obtain det(V) = det(V ′) where

V ′ =



1 0 0 · · · 0
1 v2 −v1 v2

2 −v1v2 · · · vm−1
2 −v1v

m−2
2

1 v3 −v1 v2
3 −v1v3 · · · vm−1

3 −v1v
m−2
3

...
...

...
. . .

...
1 vm−v1 v2

m−v1vm · · · vm−1
m −v1v

m−2
m


.

Let V ′′ be the (m−1)× (m−1) matrix obtained by deleting the first row and the first column of
V ′. Then, expanding across the first column ofV ′ shows that det(V) = det(V ′) = det(V ′′). Notice
that if we divide i-row of V ′′ by vi+1 −v1 for all 1 ⩽ i⩽m−1, then we get the Vandermonde
matrix V(v2, . . . ,vm). Hence by the inductive hypothesis, we obtain

det(V) =
m∏
i=2

(vi−v1) ·det(V(v2, . . . ,vm)) =
m∏
i=2

(vi−v1) ·
m∏

2⩽i<j⩽m

(vj−vi) =

m∏
1⩽i<j⩽m

(vj−vi),

as required. □

Corollary 1.1.9. Let f= cdxd+cd−1x
d−1 + · · ·+c0 ∈ k[x] be a polynomial of degree d.

Then f can have at most d distinct roots.

Proof. By contradiction, suppose that f has d+1 distinct roots; say v1,v2, . . . ,vd+1 ∈ k with
f(vi) = 0 and vi ̸= vj for i ̸= j. Consider the Vandermonde matrix V = V(v1, . . . ,vd,vd+1). We
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CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

can form the following linear system

1 v1 v2
1 · · · vd1

1 v2 v2
2 · · · vd2

1 v3 v2
3 · · · vd3

...
...

...
. . .

...
1 vd+1 v2

d+1 · · · vdd+1


·


c0
...

cd−1

cd

 =


f(v1)

...
f(vd)

f(vd+1)

 =


0
...
0
0

 .

From Lemma 1.1.8 and the fact that all the vi are distinct, it follows that det(V)=
∏

1⩽i<j⩽d+1(vj−

vi) ̸= 0. Therefore, since V is an invertible matrix, we have c0 = · · ·= cd = 0. This means that
f= 0 ∈ k[x] is the zero polynomial, a contradiction. □

Now we are ready for the proof of Proposition 1.1.7.

Proof of Proposition 1.1.7. If f = 0 is the zero polynomial in S, then it is clear that f :
kn→ k is the zero function. Hence we only need to show the reverse implication.

Suppose that f : kn → k is the zero function. We proceed by induction on the number of
variables n. If n= 1, then Corollary 1.1.9 yields that f= 0 in S (because we are assuming k is
an infinite field). Thus assume n⩾ 2. We can write

f(x1, . . . ,xn) =

e∑
i=0

gi(x1, . . . ,xn−1)x
i
n,

where each gi(x1, . . . ,xn−1) is a polynomial in k[x1, . . . ,xn−1]. Let a = (a1, . . . ,an−1) ∈ kn−1

be any tuple and consider the polynomial

fa(xn) =

e∑
i=0

gi(a1, . . . ,an−1)x
i
n ∈ k[xn].

For any v ∈ k, by assumption fa(v) = f(a1, . . . ,an−1,v) = 0, and so Corollary 1.1.9 implies that
fa(xn) = 0 in k[xn]. Hence we showed that gi(a1, . . . ,an−1) = 0 for any (a1, . . . ,an−1) ∈ kn−1.
By the induction hypothesis, we get gi(x1, . . . ,xn−1) = 0 in k[x1, . . . ,xn−1]. Finally, it follows
that f= 0 in S. □

Corollary 1.1.10. Suppose k is an infinite field and let f,g ∈ S be two polynomials. Then
f= g in S if and only if f : kn→ k and g : kn→ k are the same function.

Proof. Apply Proposition 1.1.7 to the polynomial f−g ∈ S. □

Below is the basic geometrical object we shall study.

Definition 1.1.11. Let f1, . . . ,fs ∈ S be polynomials. The affine variety defined by f1, . . . ,fs
is given by

V(f1, . . . ,fs) :=
{
(a1, . . . ,an) ∈ kn | fi(a1, . . . ,an) = 0 for all 1 ⩽ i⩽ s

}
⊂ Ank .
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CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

To close this section, we recall the following result.

Theorem 1.1.12 (Fundamental theorem of algebra). Every nonconstant polynomial f ∈ C[x]

has a root in C (i.e., C is algebraically closed).

Consequently, the variety V(f) defined by a nonconstant polynomial f ∈ C[x] with complex
coefficients is nonempty. Notice that the above theorem does not hold for the real numbers. For
instance, the polynomial x2 +1 ∈ R[x] does not have any root in R.

1.2. Ideals

We now introduce the basic algebraic objects that we study.

Definition 1.2.1. A subset I⊂ S= k[x1, ...,xn] is an ideal if it satisfies:
(i) 0 ∈ I.
(ii) If f,g ∈ I, then f+g ∈ I.
(iii) If f ∈ I and h ∈ S, then hf ∈ I.

We say that I is a proper ideal if I⊊ S and that I is the unit ideal if I= S. Notice that I= S
is the unit ideal if and only if 1 ∈ I. A natural way to present an ideal is by utilizing generators:

Definition 1.2.2. Let f1, . . . ,fs ∈ S be polynomials. Then we write

(f1, . . . ,fs) :=
{ s∑
i=1

hifi | h1, . . . ,hs ∈ S
}

.

More generally, given any (possibly infinite) set A⊂ S of polynomials, we also write

(A) :=
{ s∑
i=1

hifi | s⩾ 1, f1, . . . ,fs ∈A and h1, . . . ,hs ∈ S
}

.

If we are given two ideals I⊂ S and J⊂ S, then we have the following basic operations:
(1) I+ J :=

{
f+g | f ∈ I,g ∈ J

}
(sum).

(2) I∩ J :=
{
f ∈ S | f ∈ I and f ∈ J

}
(intersection).

(3) IJ :=
{
f1g1 + · · ·+ fsgs | s⩾ 1,f1, . . . ,fs ∈ I and g1, . . . ,gs ∈ J

}
(product).

Notice that by definition we always have IJ⊂ I∩ J.
The lemma below tells us that ideals behave well under these operations.

Lemma 1.2.3. (i) The sum I+ J of two ideals I,J⊂ S is an ideal.
(ii) (f1, . . . ,fs) is an ideal for any polynomials f1, . . . ,fs ∈ S. Then, we shall say that (f1, . . . ,fs)

is the ideal generated by the polynomials f1, . . . ,fs.
(iii) The intersection I∩ J of two ideals I,J⊂ S is an ideal.
(iv) The product I · J (also written IJ) of two ideals I,J⊂ S is an ideal.
(v) (A) is an ideal for any set of polynomials A⊂ S.

6



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

Proof. (i) We check the three conditions of Definition 1.2.1. Notice that 0 ∈ I+ J because by
assumption 0 ∈ I and 0 ∈ J, and, of course, 0 = 0+0. Let f,g ∈ I+ J. By definition, f= f1 +g1

and g= f2 +g2 with f1,f2 ∈ I and g1,g2 ∈ J. Then we can write

f+g = (f1 + f2)+(g1 +g2) .

As I and J are ideals, we have f1 + f2 ∈ I and g1 +g2 ∈ J, and thus f+g ∈ I+ J. Similarly, for
any h ∈ S, we obtain that hf= hf1 +hg1 is in I+ J because I and J are ideals. This completes
the proof that I+ J is an ideal.

(ii) It is easy to check that (fi) is an ideal for each 1⩽ i⩽ s. Notice that (f1, . . . ,fs) =
∑s
i=1(fi)

(see Exercise 1.8). Therefore part (i) implies that (f1, . . . ,fs) is an ideal.
(iii) Left as an exercise in Exercise 1.1.
(iv) Left as an exercise in Exercise 1.2.
(v) Left as an exercise in Exercise 1.3. □

Given an ideal I⊂ S, the radical of I is given by
√
I := {f ∈ S | fk ∈ I for some k⩾ 1}.

We say I is a radical ideal if I=
√
I. We shall see that radical ideals are the algebraic counter part

of varieties. We leave as an exercise to show some of the properties of radicals (see Exercise 1.9).

Example 1.2.4. Let S= k[x,y].

(i) If I= (x,y) and J= (z2 +x), then I+ J= (x,y,z2 +x) = (x,y,z2).
(ii) If I= (xy) and J= (x2), then I∩ J= (x2y) and IJ= (x3y).
(iii) If I= (x2,y2), then

√
I= (x,y).

(iv) If I= (x2) and J= (y2), then I∩ J= (x2y2) = IJ.

Given two ideals I,J⊂ S, we have the ideal quotient

I : J := {f ∈ S | fg ∈ I for all g ∈ J}

and the saturation ideal

I : J∞ :=

∞⋃
k=1

I : Jk.

The fact that I : J is an ideal follows straightforwardly by checking the conditions of Definition 1.2.1.
Since Jk+1 ⊂ JK, we get I : Jk ⊂ I : Jk+1 (see Exercise 1.10(i)), and then Exercise 1.6 implies that
I : J∞ is an ideal.

The following classes of ideals will play an important role.

Definition 1.2.5. Let I⊂ S be a proper ideal.

(i) I is prime if whenever f,g ∈ S and fg ∈ I, then either f ∈ I or g ∈ I.
7



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

(ii) I is maximal if it is maximal with respect to inclusion among proper ideals (i.e., if J⊂ S is
another ideal with I⊂ J, then either I= J or J= S).

(iii) I is primary if whenever f,g ∈ S and fg ∈ I, then either f ∈ I or some power gm ∈ I for
somem> 0.

Lemma 1.2.6. A prime ideal is radical.

Proof. Let P ⊂ S be a prime ideal. Let f ∈
√
P, that is, fk ∈ P for some k > 0. By the

definition of prime ideal, since fk = f · fk−1 ∈ P, we have f ∈ P or fk−1 ∈ P. Thus inductively
we should get f ∈ P. □

Lemma 1.2.7. A maximal ideal is a prime ideal.

Proof. Let I⊂ S be a maximal ideal. Let f,g ∈ S with fg ∈ I. Suppose that f /∈ I. Then I : f
is a proper ideal because f /∈ I is equivalent to 1 /∈ I : f. Since I : f⊃ I (see Exercise 1.10(ii)), the
maximality of I yields the equality I : f= I. As fg ∈ I, it follows that g ∈ I : f= I. Therefore, I
is a prime ideal. □

Lemma 1.2.8. If I is a primary ideal, then
√
I is prime and is the smallest prime ideal

containing I.

Proof. Let P=
√
I. Let f,g∈ Swith fg∈

√
I, that is, there is somem> 0 such that fkgk ∈ I.

Applying the definition of primary ideal to the elements fk and gk, it follows that either fk ∈ I or
fkm ∈ I for somem> 0. This means that either f ∈

√
I or g ∈

√
I. So P is a prime ideal.

Let P ′ ⊂ S be a prime ideal containing I. Then it follows that P ′ =
√
P ′ ⊃

√
I = P. This

means that P is the smallest prime containing I. □

Definition 1.2.9. If I⊂ S is primary and P =
√
I, then we say that I is P-primary.

1.3. Zariski topology

We start with the definition of varieties.

Definition 1.3.1. Let I ⊂ S = k[x1, . . . ,xn] be an ideal. The affine variety defined by I is
given by

V(I) :=
{
(a1, . . . ,an) ∈ kn | f(a1, . . . ,an) = 0 for all f ∈ I

}
⊂ Ank .

Notice that if f1, . . . ,fs ∈ S are polynomials and I= (f1, . . . ,fs) is the ideal generated by them,
then clearly V(I) = V(f1, . . . ,fs). Any possible discrepancy between the above definition and
Definition 1.1.11 will be removed when prove the Hilbert basis theorem; indeed, we shall show
that any ideal in S is generated by finitely many polynomials. It clear from the definition that for
any two ideals I,J⊂ S, if I⊂ J, then V(I)⊃ V(J) (i.e., V(−) reverses inclusions).

8
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Definition 1.3.2. A topology on a set X is given by declaring some subsets of X to be closed,
such that the following properties hold:

(a) The empty set ∅ and the whole space X are closed.
(b) Arbitrary intersections of closed sets are closed.
(c) Finite unions of closed sets are closed.

Let
{
Iλ
}
λ∈Λ be a (possibly infinite) collection of ideals in S. Then we can consider the sum

and the intersection ∑
λ∈Λ

Iλ :=

(⋃
λ

Iλ

)
⊂ S and

⋂
λ∈Λ

Iλ ⊂ S.

The next lemma describes how the operation V(−) behaves with respect to sums and inter-
sections of ideals.

Lemma 1.3.3. (i) Let
{
Iλ
}
λ∈Λ be a (possibly infinite) collection of ideals in S. Then we

have the equality

V

(∑
λ∈Λ

Iλ

)
=
⋂
λ∈Λ

V (Iλ) ⊂ Ank .

(ii) Let I1, . . . ,Ik be ideals in S. Then we have the equality

V

 k∏
j=1

Ij

 = V

 k⋂
j=1

Ij

 =

k⋃
j=1

V
(
Ij
)

⊂ Ank .

Proof. Let a= (a1 . . . ,an) ∈ kn.
(i) We have that a ∈

⋂
λ∈ΛV (Iλ) if and only if fλ(a) = 0 for all fλ ∈ Iλ and λ ∈Λ. Recall

that a polynomial f in
∑
λ∈Λ Iλ is by definition of the form

f = fλ1 + · · ·+ fλk

with fλi ∈ Iλi and λ1, . . . ,λk ∈Λ. As a consequence, we obtain the equivalence

f(a) = 0 for all f ∈
∑
λ∈Λ

Iλ ⇐⇒ f(a) = 0 for all fλ ∈ Iλ and λ ∈Λ.

This shows the required equality.
(ii) By induction we can assume that k= 2 (see Exercise 1.8). Since I1I2 ⊂ I1 ∩ I2 ⊂ Ij, we

obtain
V(I1I2)⊃ V(I1 ∩ I2)⊃ V(Ij) for 1 ⩽ j⩽ 2.

Taking the union yields the inclusions V(I1I2) ⊃ V(I1 ∩ I2) ⊃ V(I1)∪V(I2). Therefore, to
conclude the proof it suffices to show the reverse inclusion V(I1)∪V(I2)⊃ V(I1I2).

Suppose that a ∈ V(I1I2). Hence, by definition, (f ·g)(a) = f(a)g(a) = 0 for all f ∈ I1 and
g ∈ I2. If a ∈ V(I1), then a ∈ V(I1) ⊂ V(I1)∪V(I2) and we are done. Thus we may assume

9



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

a ̸∈V(I1) and so there is a polynomial f ′ ∈ I1 such f ′(a) ̸= 0. For all g∈ I2, since f ′(a)g(a) = 0,
it follows that g(a) = 0. This means precisely that a ∈ V(I2). Therefore, we proved the inclusion
V(I1I2)⊂ V(I1)∪V(I2), and this concludes the proof. □

Definition-Proposition 1.3.4. The vector space kn has a topology where the closed subsets
are affine varieties. This topology is called the Zariski topology. The space kn when is endowed
with the Zariski topology is called the affine n-space Ank .

Proof. We need to show that algebraic varieties satisfy the three condition of Definition 1.3.2.
First we check property (a). The empty set ∅= I(S) is the set of zeroes of the unit ideal. The

whole space Ank = I(0) is the set of zeroes of the zero ideal.
Properties (b) and (c) follow from Lemma 1.3.3. □

The following simple example shows that in general the operations V(−) does not commute
with arbitrary intersections of ideals.

Example 1.3.5. Let S= k[x] and consider the infinite collection of ideals Ij = (xj)⊂ S for
all j⩾ 1. Notice that

⋂
j⩾1 Ij = 0 is the zero ideal. On the other hand, we have V(Ij) = {0}⊂ A1

k

for all j⩾ 1. Therefore we obtain

V

⋂
j⩾1

Ij

= A1
k ̸= {0}=

⋃
j⩾1

V
(
Ij
)

.

This shows that the finiteness assumption in Lemma 1.3.3(ii) is essential.

We now introduce the “inverse” operation to V(−).

Definition 1.3.6. Let X⊂ Ank be an affine variety. Then the ideal of X is given by

I(X) :=
{
f ∈ S | f(a) = 0 for all a ∈ X

}
⊂ S

(see Exercise 1.11).

Example 1.3.7. In general, we trivially have I(∅) = S. If the field k is infinite, then we have
I(Ank ) = 0. Also, see Exercise 1.12.

Let I⊂ S be an ideal and X⊂ Ank be a variety. Then we can perform the following operations

I⊂ S 7→ V(I)⊂ Ank 7→ I(V(I))⊂ S

and
X⊂ Ank 7→ I(X)⊂ S 7→ V(I(X))⊂ Ank .

These operations satisfy the following:

Lemma 1.3.8. Let I⊂ S be an ideal and X⊂ Ank be a variety. Then:

(i) I⊂ I(V(I)) and the inclusion can be strict (see Example 1.3.9).
10
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(ii) X= V(I(X)).

Proof. (i) Let f ∈ I. We need to show that f(a) = 0 for all a ∈ V(I)⊂ Ank . Since a ∈ V(I)
if and only if g(a) = 0 for all g ∈ I, it clearly follows that f(a) = 0. Hence I⊂ I(V(I)).

(ii) First we showX⊂V(I(X)). Let a∈X. We need to show that f(a) = 0 for all f∈ I(X)⊂ S.
Since f ∈ I(X) if and only if f(b) = 0 for all b ∈ X, it clearly follows that f(a) = 0. Hence
X⊂ V(I(X)).

We now show the reverse inclusion X⊃ V(I(X)). By definition we can write X= V(J)⊂ Ank
for some ideal J⊂ S. From part (i) above, we get I(X) = I(V(J))⊃ J. Then the reverse inclusion
property of V(−) gives

V(I(X)) ⊂ V(J) = X.

So the equality X= V(I(X)) follows. □

Example 1.3.9. In S= k[x], we have the strict inclusion (x2)⊊ I(V(x2)) = (x).

1.4. Polynomial rings in one variable

The instructions for this section are:
• Read [3, §1.5].

1.5. Exercises

Exercise 1.1. Show that the intersection I∩ J of two ideals I,J⊂ S is an ideal. In fact, show
that a (possibly infinite) intersection of ideals is an ideal.

Exercise 1.2. Show that the product I · J of two ideals I,J⊂ S is an ideal.

Exercise 1.3. Show that (A) is an ideal for any set of polynomials A⊂ S.

Exercise 1.4. Let I,J,K⊂ S be ideals. Show that:

(i) I · (J+K) = IJ+ IK.
(ii) If I⊃ J or I⊃ K, then I∩ (J+K) = I∩ J+ I∩K.

Exercise 1.5. Give an example where the union I∪ J of two ideals I,J⊂ S is not an ideal.

Exercise 1.6. Let
{
Ij
}
j⩾1 be a sequence of ideals in S such that Ij ⊂ Ij+1 for all j⩾ 1. Show

that
⋃
j⩾1 Ij is an ideal.

Exercise 1.7. Let I,J⊂ S be ideals. Show that I+ J is the smallest ideal containing both I
and J.

Exercise 1.8. Given three ideals I,J,K⊂ S. Show the following (associativity) equalities

(i) (I+ J)+K= I+(J+K).
(ii) (I∩ J)∩K= I∩ (J∩K).

11
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(iii) (I · J) ·K= I · (J ·K).

Therefore, for a sequence I1, . . . ,Ik ⊂ S, we have well-defined ideals
∑k
j=1 Ij ⊂ S,

⋂k
j=1 Ij ⊂ S

and
∏k
j=1 Ij ⊂ S giving the sum, intersection and product, respectively.

Exercise 1.9. Let I,J⊂ S be ideals. Show that:

(i)
√
I is an ideal.

(ii)
√√

I=
√
I.

(iii)
√
I∩ J=

√
IJ=

√
I∩

√
J.

(iv) If I⊂ J, then
√
I⊂

√
J.

(v)
√
I+

√
J⊂

√
I+ J and

√√
I+

√
J=

√
I+ J.

(vi) V(
√
I) = V(I)⊂ Ank .

Exercise 1.10. Let I,J,K⊂ S be ideals. Show that:

(i) If J⊂ K, then I : J⊃ I : K.
(ii) I⊂ (I : J).
(iii) (I : J) · J⊂ I.
(iv) (I : J) : K= (I : JK) = (I : K) : J.
(v) If I1, . . . ,Is ⊂ S are ideals, then

(⋂s
j=1 Ij

)
: J=

⋂s
j=1
(
Ij : J

)
.

(vi) If J1, . . . ,Js ⊂ S are ideals, then I : (
∑s
i=1 Ji) =

⋂s
i=1 (I : Ji).

Exercise 1.11. Let X⊂ Ank be an affine variety. Show that I(X)⊂ S is an ideal.

Exercise 1.12. Let p > 1 be a prime number, k = Z/pZ be the field of p elements and
S= k[x]. Show that I(A1

k) = (xp−x) ∈ S.

Exercise 1.13. Show that the following subsets are not affine varieties:

(i) X= Zn ⊂ AnR.
(ii) X= AnR \ {(0, . . . ,0)}⊂ AnR.
(iii) X= {(a,b) ∈ A2

R | b= sin(a)}⊂ A2
R.

(iv) X= {(a,b) ∈ A2
R | b= ea}⊂ A2

R.

Exercise 1.14. LetX⊂Ank and Y ⊂Amk . Show that the Cartesian productX×Y ⊂Ank ×Amk
∼=

An+mk is also an affine variety.

Exercise 1.15. Identify Amnk with the space ofm×n matrices, and let r⩾ 0. Show that the
set of matrices with rank ⩽ r is an affine variety in Amnk .

Exercise 1.16. Show that a finite set of points in Ank is an affine variety.

Exercise 1.17. Show that the only affine varieties in A1
k are (a) the empty set, (b) the whole

space A1
k, and (c) a finite set of points.

12
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Exercise 1.18. This exercise shows that affine varieties are not stable under projections.
Consider the affine variety C =

{
(a,b) ∈ A2

R | a2 +b2 = 1
}

(the circle of radius 1) and the
natural projection π : A2

R → A1
R, (a,b) 7→ a that forgets the second coordinate. Show that the set

π(C)⊂ A1
R is not an affine variety.

13



CHAPTER 2

Algebra and combinatorics of monomial ideals

Throughout this chapter, we continue using the previous notation: S = k[x1, . . . ,xn] is a
polynomial ring in n variables over a field k. We use the notation xa = xa1

1 · · ·xann for any
a := (a1, . . . ,an) ∈ Nn.

2.1. Basic properties of monomial ideals

The instructions for this section are:
• Read [5, §1.1].
• Read [5, §1.2].
• Read [5, §1.3.1].

2.2. Dickson’s lemma

In this section, we present one of the central results we shall need.
Denote by Mon(S) = {xa = xa1

1 · · ·xann | a = (a1, . . . ,an) ∈ Nn} the set of monomial in the
polynomial ring S = k[x1, . . . ,xn]. For any polynomial f =

∑
a∈Nn caxa ∈ S, we denote the

support of f by
supp(f) :=

{
xa ∈ Mon(S) | ca ̸= 0

}
.

Let M be a nonempty subset of Mon(S). A monomial xa ∈M is said to be a minimal element of
M with respect to divisibility if whenever xb | xa with xb ∈M, then xb = xa. Let Mmin denote
the set of minimal elements of M.

Definition 2.2.1. An ideal I⊂ S is called a monomial ideal if it is generated by monomials.

The following result tells us that the set of monomials Mon(S) is “almost well-ordered” with
respect to divisibility.

Theorem 2.2.2 (Dickson lemma). Let M be a nonempty subset of Mon(S). Then Mmin is a
finite set.

Proof. We prove Dickson’s lemma by induction on n, the number of variables of S. If n= 1,
then M consists of certain powers of x1, and the set of minimal elements of M is the set {xc1},
where c is the smallest number such that xc1 ∈M.

Now assume that n⩾ 2. Let N be the set of monomials

N :=
{

xc = xc1
1 · · ·xcn−1

n−1 ∈ k[x1, . . . ,xn−1] | xcxdn ∈M for some d⩾ 0
}

.

14
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By the induction hypothesis, the set Nmin of minimal elements of N is finite, say Nmin =

{xc1 , . . . ,xcr}⊂ k[x1, . . . ,xn−1] for some c1, . . . ,cr ∈ Nn−1. For each xci there exists ai ⩾ 0 such
that xcix

ai
n ∈Mmin. Let a= max{a1, . . . ,ar}, and for each b with 0 ⩽ b < a let

Nb :=
{

xc ∈ k[x1, . . . ,xn−1] | xcxbn ∈M
}

.

Again by the induction hypothesis, Nmin
b is a finite set. We use the notation

Nmin
b xbn :=

{
xcxbn | xc ∈Nmin

b

}
.

We claim that

Mmin ⊂
{

xc1xa1
n , . . . ,xcrxarn

}
∪
a−1⋃
b=0

Nmin
b xbn.

Since the right-hand side of this inclusion is a finite set, the assertion of the theorem follows from
this claim.

In order to prove the claim, let u= xcxdn be a monomial in M. If d⩾ a, then some monomial
in {xc1x

a1
n , . . . ,xcrxarn } divides u. If 0 ⩽ d < a, then u is divisible by a monomial in Nmin

d xdn.
This completes the proof of the theorem. □

The next corollary tells us that monomial ideals are finitely generated. This is a special case
of Hilbert basis theorem for monomial ideals.

Corollary 2.2.3 (Hilbert basis theorem for monomial ideals). Let I be a monomial ideal.
Then each set of monomial generators of I contains a finite set which generates I.

Proof. Let M be a set of monomial generators of I. By Theorem 2.2.2, the set of minimal
elements of M is finite. This finite set is a set of monomial generators of I. □

Below a list of basic results regarding monomial ideals. The proofs are pretty straightforward
and the reader is referred to [5, §1.1].

Theorem 2.2.4. Let I⊂ S be a monomial ideal. The set N of monomials belonging to I is a
k-basis of I.

Corollary 2.2.5. Let I⊂ S be an ideal. The following conditions are equivalent:

(a) I is a monomial ideal.
(b) For all f ∈ S one has: f ∈ I if and only if supp(f)⊂ I.

Corollary 2.2.6. Let I be a monomial ideal. The residue classes of the monomials not
belonging to I form a k-basis of the residue class ring S/I. (The monomials that do not belong
to I are called standard.)

The set of monomials which belong to I can be described as follows:
15
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Proposition 2.2.7. Let {u1, . . . ,um} be a monomial system of generators of the monomial
ideal I. Then a monomial v ∈ Mon(S) belongs to I if and only if there exists a monomial w such
that v=wui for some 1 ⩽ i⩽m.

Proposition 2.2.8. Each monomial ideal has a unique minimal monomial set of generators.
More precisely, letG denote the set of monomials in Iwhich are minimal with respect to divisibility.
Then G is the unique minimal set of monomial generators.

As a consequence we make the following definition.

Definition 2.2.9. The unique minimal set of monomial generators of the monomial ideal I
is denoted by G(I)⊂ Mon(S).

As another consequence of Dickson’s lemma we have a “Noetherian property” for monomial
ideals.

Proposition 2.2.10. Each ascending sequence of monomial ideals I1 ⊂ I2 ⊂ ·· · ⊂ Ij ⊂ ·· ·
in S terminates, that is, there exists an integer k such that Il = Ik for all l⩾ k.

Proof. Let M =
⋃∞
j=1G(Ij). According to Dickson’s lemma (see Theorem 2.2.2), the set

Mmin is finite. Hence there is an integer k such that Mmin ⊂
⋃k
j=1G(Ij). Now let l ⩾ k and

let u be a monomial in Il. Then there exists v ∈ Mmin which divides u. This implies that
u ∈

⋃k
j=1 Ij = Ik, as desired. □

We close this section with some basic properties of monomial ideals. Given two monomials
u= xa1

1 · · ·xann and v= xb1
1 · · ·xbnn , we have the following explicit descriptions

gcd(u,v) = x
min{a1,b1}
1 · · ·xmin{an,bn}

n

and
lcm(u,v) = x

max{a1,b1}
1 · · ·xmax{an,bn}

n .

We saw that the generators of the product or the sum of ideals are easy to find. On the other hand,
it is difficult to find the generators of an intersection. However, in the case of ideals this process
is quite explicit.

Lemma 2.2.11. Let I and J be monomial ideals. Then I∩ J is a monomial ideal, and

G =
{

lcm(u,v) | u ∈G(I) and v ∈G(J)
}

is a set of generators of I∩ J.

Proof. Let f ∈ I∩ J. By Corollary 2.2.5, since I and J are monomial ideals, it follows that
supp(f)⊂ I∩ J. Again applying Corollary 2.2.5, we see that I∩ J is a monomial ideal.

Let w ∈ Mon(S) be a monomial in I∩ J. Due to Proposition 2.2.7, there exist u ∈G(I) and
v ∈G(J) such that u |w and v |w. It follows that lcm(u,v) divides w. Since lcm(u,v) ∈ I∩ J
for all u ∈G(I) and v ∈G(J), we conclude that G is indeed a set of generators of I∩ J. □

16



CHAPTER 2. ALGEBRA AND COMBINATORICS OF MONOMIAL IDEALS

Similarly, computing ideals quotients is difficult in general. However, for monomial ideals,
the task is quite explicit.

Lemma 2.2.12. Let I and J be monomial ideals. Then I : J is a monomial ideal, and

I : J =
⋂

v∈G(J)
I : v.

Moreover, {u/gcd(u,v) | u ∈G(I)} is a set of generators of I : v.

Proof. Let f ∈ I : J. Then fv ∈ I for all v ∈ G(J). In view of Corollary 2.2.5 we have
supp(f)v= supp(fv)⊂ I. This implies that supp(f)⊂ I : J. Thus Corollary 2.2.5 yields that I : J
is a monomial ideal.

The given presentation follows from Exercise 1.10. It is clear that {u/gcd(u,v) | u∈G(I)}⊂
I : v. So now let w ∈ I : v. Then there exists u ∈G(I) such that u divides wv. This implies that
u/gcd(u,v) divides w, as desired. □

2.3. Primary decomposition of monomial ideals

In this section, we discuss the notion of primary decomposition for monomial ideals. A
decomposition of an ideal I⊂ S as an intersection I=

⋂m
i=1Qi of ideals is called irredundant if

none of the ideals Qi can be omitted in this presentation. The following important theorem does
the job for monomial ideals.

Theorem 2.3.1. Let I ⊂ S = k[x1, . . . ,xn] be a monomial ideal. Then I =
⋂m
i=1Qi, where

each Qi is generated by pure powers of the variables. In other words, each Qi is of the form(
x
a1
i1

, . . . ,xakik
)
⊂ S. Moreover, an irredundant decomposition of this form is unique.

Proof. Let G(I) = {u1, . . . ,ur}, and suppose some ui is not a pure power, say u1. Then
we can write u1 = vw where v and w are coprime monomials, that is, gcd(v,w) = 1 and
u ̸= 1 ̸=w. We claim that I= I1∩ I2 where I1 = (v,u2, . . . ,ur) and I2 = (w,u2, . . . ,ur). Indeed,
since u and v are coprime, Lemma 2.2.11 yields the equality I1 ∩ I2 = (lcm(v,w),u2, . . . ,ur) =
(u1,u2, . . . ,ur) = I.

If either G(I1) or G(I2) contains an element which is not a pure power, we proceed as before
and obtain after a finite number of steps a presentation of I as an intersection of monomial ideals
generated by pure powers. By omitting those ideals which contain the intersection of the others
we end up with an irredundant intersection.

So it remains to show uniqueness. Let Q1 ∩·· ·∩Qr = I=Q ′
1 ∩·· ·∩Q ′

s be two irredundant
intersections of ideals generated by pure powers. We will show that for each 1 ⩽ i⩽ r there exists
1 ⩽ j⩽ s such thatQ ′

j ⊂Qi . By symmetry we then also have that for each 1 ⩽ k⩽ s there exists
an 1 ⩽ l⩽ r such thatQl ⊂Q ′

k. This will then imply that r= s and {Q1, . . . ,Qr}= {Q ′
1, . . . ,Q ′

s}.
17
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Let 1 ⩽ i ⩽ r. We may assume that Qi = (xa1
1 , . . . ,xakk ). Suppose that Q ′

j ̸⊂ Qi for all
1 ⩽ j⩽ s. Then for each j there exists xbjℓj ∈Q ′

j \Qi. It follows that either ℓj > k or bj < alj . Let

u = lcm
{
x
b1
ℓ1

, . . . ,xbsℓs
}

.

We have u ∈
⋂s
j=1Q

′
j = I⊂Qi. Therefore there exists 1 ⩽ c⩽ k such that xacc divides u. But

this is obviously impossible, and so the proof is complete. □

A monomial ideal is called irreducible if it cannot be written as proper intersection of two
other monomial ideals. Equivalently, I is irreducible if whenever I= I1 ∩ I2 then either I= I2 or
I= I2. It is called reducible if it is not irreducible.

Corollary 2.3.2. A monomial ideal is irreducible if and only if it is generated by pure
powers of the variables.

Proof. LetQ= (xa1
i1

, . . . ,xakik ). SupposeQ= I∩Jwhere I and J are monomial ideals properly
containing Q. By Theorem 2.3.1, we have two irredundant decompositions I =

⋂r
i=1Qi and

J =
⋂s
j=1Q

′
j where the Qi and Q ′

j are generated by powers of the variables. Thus we get the
decomposition

Q =

r⋂
i=1

Qi ∩
s⋂
j=1

Q ′
j .

The uniqueness statement of Theorem 2.3.1 implies that r= s= 1 and Q=Q1 =Q
′
1. This is a

contradiction.
Conversely, if G(Q) contains a monomial u= vw with gcd(v,w) = 1 and v ̸= 1 ̸=w, then,

as in the proof of Theorem 2.3.1,Q can be written a proper intersection of monomial ideals. □

Lemma 2.3.3. Let I⊂ S be an irreducible monomial ideal. Then I is primary.

Proof. Let f,g ∈ S and fg ∈ I. By Proposition 2.2.10, we have I : g∞ =
⋃∞
j=1 I : g

j = I : gm

for somem> 0; in particular, I : gm+1 = I : gm.
We claim that we have the equality (I+(f))∩ (I+(gm)) = I. It is clear that (I+(f))∩ (I+

(gm))⊃ I. Let h ∈ (I+(f))∩ (I+(gm)). Then we can write h= h1 +af= h2 +bg
m, where

h1,h2 ∈ I and a,b ∈ S. Multiplying by g yields the equality

h1g+afg−h2g = bgm+1,

and since h1,fg,h2 ∈ I, it follows that b ∈ I : gm+1. From the assumption I : gm+1 = I : gm, we
obtain h3 = bg

m ∈ I. Then dividing by g yields the equality

h1 +af−h2 = h3,

from which we conclude that af ∈ I. As a consequence, h= h1+af ∈ I, and so we get the claim
(I+(f))∩ (I+(gm)) = I.

18
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Since I is irreducible, we obtain either I= I+(f) or I= I+(gm). Therefore, either f ∈ I or
gm ∈ I. This means precisely that I is primary. □

Remark 2.3.4. Corollary 2.3.2 and Lemma 2.3.3 yield that an ideal Q= (xa1
i1

, . . . ,xakik ) ⊂ S
generated by pure powers of the variables is primary with respect to the prime ideal

√
Q =

(xi1 , . . . ,xik) ⊂ S.

Remark 2.3.5. Theorem 2.3.1 in combination with Corollary 2.3.2 now says that each mono-
mial ideal has a unique decomposition as an irredundant intersection of irreducible monomial
ideals. Moreover, Lemma 2.3.3 tells us that such decomposition is primary.

2.4. Hilbert functions of monomial ideals

In this section, we study the Hilbert functions of monomial ideals. Our main goal is to
provide a self-contained and combinatorial proof of the existence of Hilbert polynomials and
Hilbert series. Our proof will heavily depend on the decomposition of monomial ideals into
ideals generated by pure powers of the variables (see Theorem 2.3.1) and on the fact that we
have distributive law of sums over intersections in the case of monomial ideals (see Exercise 2.1).
Since the dimension of an affine space Ank should be n, the following lemma yields a successful
way to define the dimension of the variety determined by a monomial ideal.

Definition-Lemma 2.4.1. Let I ⊂ S be a monomial ideal. From Theorem 2.3.1, let I =⋂m
i=1Qi be an irredundant decomposition where each Qi is generated by pure powers. Then

V(I) is a finite union of affine spaces and its dimension is equal to

dim(V(I)) := max
{

dim(V(Qi)) | 1 ⩽ i⩽m
}

.

Proof. We have thatV(I)=
⋃m
j=1V(Qi). LetQi=(xa1

i1
, . . . ,xakik )⊂ S. We have the following

equality
V(Qi) =

{
(b1, . . . ,bn) ∈ Ank | bi1 = · · ·= bik = 0

}
∼= An−kk

that proves the claim. □

Definition 2.4.2. An S-module is an Abelian groupM on which S acts linearly by a mapping
S×M→M that satisfies the axioms

(i) a(x+y) = ax+ay.
(ii) (a+b)x= ax+bx.
(iii) (ab)x= a(bx).
(iv) 1x= x.
for all a,b ∈ S and x,y ∈M.

We say thatM is a graded S-module, if it has a direct sum decompositionM=
⊕
i∈ZMi

as k-vector spaces and SiMj ⊆Mi+j for all i, j ∈ Z. For M and graded S-module and p ⩾ 0,
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we consider the graded module M(−p) with graded parts M(−p)i =Mi−p. Of particular
interest for us is the free graded module S(−p) defined by S(−p)i = Si−p, i.e., for p ⩾ 0 the
module S(−p) is shifted p degrees with S(−p)p = S0 = k. Given a monomial ideal I⊂ S, from
Theorem 2.2.4 and Corollary 2.2.6, we obtain that

I =
⊕
j⩾0

Ij and S/I =
⊕
j⩾0

[S/I]j =
⊕
j⩾0

Sj/Ij.

are graded S-modules where the graded parts are finite dimensional k-vector spaces. We will see
that this is also holds when I is a homogeneous ideal.

Definition 2.4.3. LetM be a graded S-module with finite dimensional parts. The Hilbert
series ofM is the following Laurent series

HilbM(t) :=
∑
k∈Z

dimk
(
Mj

)
tk.

Our primary case of interest is the Hilbert series of a quotient ring S/I; in this case, we have a
power series HilbS/I(t) =

∑
k⩾0 dimk ([S/I]k)t

k ∈ NJtK because [S/I]k = 0 for k < 0.

Our goal is to prove the following important theorem.

Theorem 2.4.4 (Hilbert). Let I⊂ S= k[x1, . . . ,xn] be a monomial ideal and X= V(I)⊂ Ank .
Let d= dim(X) be the dimension of X. Then the following statements hold:

(i) We have the equality

HilbS/I(t) =
Q(t)

(1− t)d

where Q(t) ∈ Z[t] is a polynomial with integer coefficients and Q(1) ∈ Z+ is a positive
integer.

(ii) There is a unique polynomial

PX(z) = e0
zd−1

(d−1)!
+(lower degree terms) ∈ Q[z]

(called the Hilbert polynomial of X) of degree d−1 such that e0 =Q(1) and

PX(k) = dimk ([S/I]k)

for all k≫ 0.

Definition 2.4.5. Let I⊂ S be a monomial ideal and X= V(I)⊂ Ank . Then the degree of X
is given by deg(X) = e0 =Q(1) where e0 is the normalized leading coefficient of the Hilbert
polynomial PX(z) and Q(t) is the numerator of the Hilbert series HilbS/I(t).

To prove the above far-reaching theorem we shall need several technical results. We start
with an import example.
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Example 2.4.6. In how many ways can you share k oranges with n people? This is a simple
combinatorial problem whose solution is(

k+n−1
n−1

)
=

(n+k−1)!
(n−1)!k!

.

Equivalently, we can ask how many tuples (a1, . . . ,an) ∈ Nn do we have such that

a1 + · · ·+an = k?

Since the monomials of degree k give a k-basis of Sk, we get

dimk (Sk) =

(
k+n−1
n−1

)
.

On the other hand, the binomial theorem tells us that

1
(1− t)n

=

∞∑
k=0

(
−n

k

)
(−t)k =

∞∑
k=0

(
n+k−1

k

)
tk =

∞∑
k=0

(
n+k−1
n−1

)
tk.

Therefore, we obtain the appealing fact

HilbS(t) =
1

(1− t)n
∈ NJtK.

We have that shifting makes a trivial change in terms of Hilbert series.

Lemma 2.4.7. LetM be a graded S-module with finite graded parts and p⩾ 0. Then

HilbM(−p)(t) = tpHilbM(p)(t).

In particular, HilbS(−p)(t) = tp

(1−t)n .

Proof. Making the following simple algebraic manipulation

HilbM(−p)(t) =
∑
k∈Z

dimk
(
Mk−p

)
tk =

∑
k∈Z

dimk (Mk)t
k+p = tpHilbM(p)(t)

we get the equality. □

We say that an S-linear map φ :M→N graded S-modules is graded if φ(Mk)⊂Nk for all
k ∈ Z. Let L,M,N be S-modules. We say that we have a short exact sequence

0 → L
φ−→M

ψ−→N→ 0;

if φ and ψ are S-linear maps, φ is injective, ψ is surjective and Ker(ψ) = Im(φ). We say the
short exact sequence is graded if the modules L,M,N and the maps φ,ψ are all graded.

The next lemma says that Hilbert series are additive.

Lemma 2.4.8. Let 0 → L→M→ N→ 0 be a graded short exact sequence of graded
S-modules with finite graded parts. Then

HilbM(t) = HilbL(t)+HilbN(t).
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Proof. From the assumptions we getMk
∼= Lk

⊕
Nk. So the required equality

HilbM(t) =
∑
j∈Z

dimk
(
Mj

)
tj =

∑
j∈Z

(
dimk

(
Lj
)
+dimk

(
Nj
))
tj = HilbL(t)+HilbN(t)

follows. □

We now discuss an “inclusion-exclusion” type of argument that will allow us to the express
the Hilbert series of an intersection of monomial ideals. The starting point is with two ideals.

Lemma 2.4.9. Let I,J⊂ S be two ideals. Then we have a natural short exact sequence

0 → S/I∩ J φ−→ S/I⊕S/J π−→ S/I+ J→ 0,

where φ(f+ I∩ J) = (f+ I,f+ J) and π(f+ I,g+ J) = (f−g+ I+ J). Moreover, if I and J are
monomial ideals (or homogeneous as we will see later), then this short exact sequence is graded.

Proof. For any f+ I+ J ∈ S/I+ J, we have π(f+ I,0+ J) = f+ I+ J; thus the map π is
surjective. For any f+I∩J∈ S/I∩J, ifφ(f+I∩J) = (f+I,f+J) = (0+I,0+J), then f∈ I∩J;
thus the map φ is injective.

The inclusion Im(φ)⊂ Ker(π) is clear by construction. On the other hand, let (f+I,g+J) ∈
Ker(π). This means that f−g ∈ I+ J, and so we can write f−g=−a+b with a ∈ I and b ∈ J.
Since f+a= g+b, a ∈ I and b ∈ J, it now follows that

φ(f+a+ I∩ J) = (f+a+ I,g+b+ J) = (f+ I,g+ J);

hence (f+ I,g+ J) ∈ Im(φ). Therefore, Im(φ) = Ker(π) and it follows that we have a short
exact sequence.

If I and J are monomial ideals, then the modules S/I∩ J, S/I⊕S/J, S/I+ J are graded (see
Theorem 2.2.4 and Corollary 2.2.6) and the maps φ and π are clearly graded. □

Notation 2.4.10. Given a sequence of monomial ideals I1, . . . ,Ik ⊂ S and a subset J⊆ [k],
we define the ideal IJ :=

∑
i∈J Ii. If J = ∅, we set IJ = S. We further specify

IE({I1, . . . ,Ik})(t) :=
∑
J⊆[k]

(−1)|J|−1HilbS/IJ(t) ∈ NJtK.

The next result is only valid for monomial ideals and it uses the distributive law from
Exercise 2.1.

Proposition 2.4.11. Let I1, . . . ,Ik ⊂ S be monomial ideals and consider the intersection
I= I1 ∩·· ·∩ Ik ⊂ S. Then we have the equality

HilbS/I(t) = IE({I1, . . . ,Ik})(t).
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Proof. We proceed by induction on k. The case k= 1 is clear. From Lemma 2.4.9, we have
the short exact sequence

0 → S/I→ S/I1 ∩·· ·∩ Ik−1 ⊕S/Ik→ S/(I1 ∩·· ·∩ Ik−1)+ Ik→ 0.

The additivity of Hilbert series (see Lemma 2.4.8) gives the equality

HilbS/I(t) = HilbS/I1∩···∩Ik−1
(t)+HilbS/Ik(t)−HilbS/(I1∩···∩Ik−1)+Ik(t).

Due to Exercise 2.1, we have the distributive equality

(I1 ∩·· ·∩ Ik−1)+ Ik = (I1 + Ik)∩·· ·∩ (Ik−1 + Ik).

After applying the inductive hypothesis to the monomial ideals J1 = I1 ∩ ·· · ∩ Ik−1 and J2 =

(I1 + Ik)∩·· ·∩ (Ik−1 + Ik), we obtain

HilbS/J(t) = HilbS/J1(t)+HilbS/Ik(t)−HilbS/J2(t)

= IE(I1, . . . ,Ik−1)(t)+HilbS/Ik(t)− IE(I1 + Ik, . . . ,Ik−1 + Ik)(t)

=
∑

J⊆[k−1]

(−1)|J|−1HilbS/IJ(t)+HilbS/Ik(t)+
∑

{k}⊊J⊆[k]

(−1)|J|−1HilbS/IJ(t)

= IE({I1, . . . ,Ik})(t)

whence the result follows. □

Another necessary ingredient is that of regular sequences. Given an S-module M, we say
that f ∈ S is regular (or a nonzerodivisor) on M if whenever w ∈M and fw = 0 ∈M then
w= 0 ∈M.

Definition 2.4.12. A sequence of polynomials f1, . . . ,fm in S is regular if the two following
conditions hold:

(i) (f1, . . . ,fm) ̸= S.
(ii) f1 ̸= 0 and fi is regular on S/(f1, . . . ,fi−1) for all i⩾ 2.

The lemma below gives another reason why ideals generated by pure powers of the variables
are quite special.

Proposition 2.4.13. LetQ= (xa1
i1

, . . . ,xakik )⊂ S be an ideal generated by pure powers of the
variables (with i1 < · · ·< ik and aj > 0 for all 1 ⩽ j⩽ k). Then the following statements hold:

(i) xa1
i1

, . . . ,xakik form a regular sequence.
(ii) We have the equality

HilbS/Q(t) =

∏k
j=1(1+ t+ t

2 + · · ·+ taj−1)

(1− t)d

where d= n−k= dim(V(Q)).
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Proof. (i) By Lemma 2.2.12, we have(
x
a1
i1

, . . . ,xaj−1
ij−1

)
: x
aj
ij

=
(
x
a1
i1

, . . . ,xaj−1
ij−1

)
.

Hence Exercise 2.6 implies that xa1
i1

, . . . ,xakik form a regular sequence.
(ii) Let j⩾ 1. Let J=

(
x
a1
i1

, . . . ,xajij
)
⊂ S and J ′ =

(
x
a1
i1

, . . . ,xaj−1
ij−1

)
⊂ S (when j= 1, we have

by convention J ′ = 0). We claim that we have a graded short exact sequence

0 → S/J ′(−aj)
φ−→ S/J ′

π−→ S/J→ 0,

where φ(f+ J ′) = xajij f+ J
′ and π(f+ J ′) = f+ J.

For any f+ J ∈ S/J, we have π(f+ J ′) = f+ J; thus the map π is surjective. Notice that
Im(φ) = Ker(π) because for any f+ J ′ ∈ S/J ′ we have π(f+ J ′) = f+ J = 0+ J if and only if
f+ J ′ = x

aj
ij
g+ J ′ for some g ∈ S. We know that φ is injective because xajij is regular on S/J ′.

Thus we indeed have a short exact sequence.
It remains to show that the short exact sequence is graded. All the considered modules are

graded since we are dealing with monomial ideals. The map π is clearly graded. For any f+ J ′ ∈[
S/J ′(−aj)

]
k
= [S/J ′]k−aj (i.e., f ∈ S is a homogeneous polynomial with deg(f) = k−aj), we

obtain
φ(f+ J ′) = x

aj
ij
f+ J ′ ∈

[
S/J ′

]
k

;

so φ is also graded. This concludes the proof that we have a graded short exact sequence.
By combining Lemma 2.4.8 and Lemma 2.4.7, we get

HilbS/J(t) = HilbS/J ′(t)− tajHilbS/J ′(t) = (1− taj)HilbS/J ′(t).

Finally, proceeding inductively and utilizing the initial computation of Example 2.4.6, we obtain

HilbS/Q(t) =

∏k
j=1(1− t

aj)

(1− t)n

=

∏k
j=1(1− t)(1+ t+ t

2 + · · ·+ taj−1)

(1− t)n

=

∏k
j=1(1+ t+ t

2 + · · ·+ taj−1)

(1− t)d
,

as required. □

Remark 2.4.14 (A very simple version of Bezout theorem). Let Q= (xa1
i1

, . . . ,xakik )⊂ S and
X= V(Q)⊂ Ank . Then Proposition 2.4.13(ii) yields the formula

deg(X) = a1 · · ·ak ̸= 0.

Our last necessary ingredients is the following structural result regarding power series. First
discuss a well-know characterization of numerical polynomials. Let F : Z → Z be a function. We
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define the difference operator by setting (∆F)(n) := F(n+1)−F(n) for all n ∈ Z. For all i⩾ 1,
we set ∆iF= ∆(∆i−1F). Notice that ∆iF is also a function from the integers to the integers.

Lemma 2.4.15. Let P(z)∈Q[z] be a polynomial of degreed−1. Then the following conditions
are equivalent:

(a) P(k) ∈ Z for all k ∈ Z (this means that P(z) is a numerical polynomial).
(b) There exist integers a0, . . . ,ad−1 ∈ Z such that

P(z) =

d−1∑
i=0

ai

(
z+ i

i

)
.

Proof. The implication (b) ⇒ (a) is clear.
Thus we concentrate on the implication (a) ⇒ (b). Notice that the polynomials

(
z+i
i

)
form

a Q-basis of Q[z] (this can be proved for instance by utilizing the division algorithm on Q[z]).
Therefore we can write P(z) =

∑d−1
i=0 ai

(
z+i
i

)
. The identity

(
z+i+1
i

)
−
(
z+i
i

)
=
(
z+i
i−1

)
. Thus we

have

∆P(z) =

d−1∑
i=1

ai

(
z+ i

i−1

)
,

and so applying the difference operator i-times yields

∆iP(z) =

d−1∑
j=i

ai

(
z+ j

j− i

)
.

This implies that ai = ∆iP(−i−1) ∈ Z, as required. □

Lemma 2.4.16. LetH(t) = Q(t)

(1−t)d
=
∑∞
k=0akt

k ∈ NJtK be a power series whereQ(t)∈ Z[t]

is a polynomial with integer coefficients and Q(1) ̸= 0. Then the following statements hold:

(i) Q(1) ∈ Z+ is a positive integer.
(ii) There is a polynomial P(z) = e0

zd−1

(d−1)! +(lower degree terms) ∈ Q[z] of degree d−1 such
that e0 =Q(1) and P(k) = ak for all k≫ 0.

Proof. By assumption, we have Q(t) =
∑m
j=0 cjt

j where cj ∈ Z is an integer. We can write
Q(t) =

∑ℓ
j=0 ej(1− t)

j. It is then clear that e0 =Q(1) =
∑m
j=0 cj is a nonzero integer. We can

make the expansion

H(t) =

∑ℓ
j=0 ej(1− t)

j

(1− t)d
=

d−1∑
j=0

ej

(1− t)d−j
+

ℓ∑
j=d

ej(1− t)j−d.
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Let H ′(t) =
∑d−1
j=0

ej

(1−t)d−j =
∑
k⩾0bkt

k. Notice that bk = ak for k≫ 0 because
∑ℓ
j=d ej(1−

t)j−d is a polynomial and so it has finitely many terms. Due to Example 2.4.6, we can expand

H ′(t) =

d−1∑
j=0

ej

(1− t)d−j

=

d−1∑
j=0

ej

∞∑
k=0

(
k+d− j−1
d− j−1

)
tk

=

∞∑
k=0

d−1∑
j=0

ej

(
k+d− j−1
d− j−1

)tk.

Consider the polynomial P(z) =
∑d−1
j=0 ej

(
z+d−j−1
d−j−1

)
∈ Q[z]. By construction we have that P(k) =

bk = ak for k≫ 0 and that

P(z) = e0
zd−1

(d−1)!
+(lower degree terms) ∈ Q[z].

Finally, notice that

e0 = (d−1)! lim
k→∞ P(k)kd−1 = (d−1)! lim

k→∞ ak
kd−1 ⩾ 0.

So the result follows. □

We now have all the ingredients to prove Theorem 2.4.4.

Proof of Theorem 2.4.4. Let I⊂ S= k[x1, . . . ,xn] be a monomial ideal and X=V(I)⊂ Ank .
Let d= dim(X). By Theorem 2.3.1, let I=

⋂k
j=1 Ij be the irredundant decomposition into ideals

generated by pure powers of the variables. Following Notation 2.4.10, for each subset J⊂ [k],
we set XJ = V(IJ) and dJ = dim(XJ), where IJ =

∑
j∈J Ij ⊂ S. Notice that each IJ is an ideal

generated by pure powers. We also have that dJ = dim(XJ)⩽ d. By utilizing Proposition 2.4.11
and Proposition 2.4.13, we obtain

HilbS/I(t) =
∑
J⊆[k]

(−1)|J|−1HilbS/IJ(t)

=
∑
J⊆[k]

(−1)|J|−1 QJ(t)

(1− t)dJ

=

∑
J⊆[k](−1)|J|−1(1− t)d−dJQJ(t)

(1− t)d

=
Q(t)

(1− t)d
,
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where each QJ(t) ∈ Z[t] is a polynomial with integer coefficients. Thus Q(t) ∈ Z[t] is also
a polynomial with integer coefficients. If we show that Q(1) ̸= 0, then the proof would be
completed by Lemma 2.4.16. Indeed, we would obtain that Q(1) ∈ Z+ and the existence of a
polynomial PX(z) ∈ Q[z] of degree d−1 with normalized leading coefficient equal to Q(1) and
such that PX(j) = dimk

(
[S/I]j

)
for all j≫ 0.

By contradiction assumeQ(1) = 0. Hence we can writeQ(t) = (1−t)cQ ′(t)withQ ′(1) ̸= 0
and c ⩾ 1. Notice that Q ′(t) = 1

(1−t)cQ(t) also have integer coefficients. Let e = d− c and

observe that HilbS/I(t) =
Q ′(t)
(1−t)e . From Lemma 2.4.16, we get a polynomial PX(z) ∈ Q[z] of

degree e−1 such PX(k) = dimk([S/I]j) for all j≫ 0. We may assume that the ideal I1 ⊂ S is
generated byn−d pure powers of the variables and thus dim(X1)=d. By applying Lemma 2.4.16
and Proposition 2.4.13 to the ideal I1 ⊂ S generated by pure powers of the variables, we get
a polynomial PX1(z) ∈ Q[z] of degree d− 1 such that PX1(j) = dimk([S/I1]j) for all j≫ 0.
Since I⊂ I1, it follows that dimk([S/I1]j)⩽ dimk([S/I]j) for all j ∈ N (see Theorem 2.2.4 and
Corollary 2.2.6). However, this leads to the following clear contradiction

PX1(j) = dimk([S/I1]j) ⩽ dimk([S/I]j) = PX(j) for all j≫ 0,

because by assumption deg(PX) = e−1< d−1 = deg(PX1).
Finally, we should have Q(1) ̸= 0, thus concluding the proof of the theorem. □

2.5. Maclagan’s theorem (an extension of Dickson’s lemma)

Here we discuss an interesting extension of Dickson’s lemma given by Maclagan [7]. Given
any collection of ideals A =

{
Iλ
}
λ⊂Λ of ideals in S, we denote by A max the collection of ideals

is A that are maximal with respect to inclusion. We prove the following finiteness theorem.

Theorem 2.5.1 (Maclagan [7]). Let A =
{
Iλ
}
λ⊂Λ be a collection of monomial ideals in S.

Then A max is a finite set.

Notice that if each each Iλ⊂ S is a principal monomial ideal (i.e., generated by one monomial),
then the above theorem is precisely Dickson’s lemma (see Theorem 2.2.2). It should be mentioned
that this finiteness result is false for not monomial ideals as shown by next easy example.

Example 2.5.2. Let S = k[x] with k an infinite field. Consider the infinite collection of
principal ideals A =

{
Ia
}
a∈k with Ia = (x−a)⊂ S. Then A max = A .

An equivalent formulation of Theorem 2.5.1 is given in the next result.

Lemma 2.5.3. We have that Theorem 2.5.1 holds if and only if for any infinite collection A

of monomial ideals in S there is an infinite chain I1 ⊋ I2 ⊋ · · · of ideals in A .

Proof. Assume that Theorem 2.5.1 holds. Let A infinite collection of monomial ideals.
Since A max is a finite set and A is infinite, there should be an ideal I1 ∈ A max such that the
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collection A1 = {I ∈ A | I1 ⊋ I} is infinite. By applying the same argument, we can choose
I2 ∈ A max

1 such that the collection A2 = {I ∈ A1 | I2 ⊋ I} is infinite. Therefore, by proceeding
inductively, we have infinite chain I1 ⊋ I2 ⊋ · · · of ideals in A .

On the other hand, suppose that the other condition holds. Let A be a collection of monomial
ideals. If A max were infinite, then we would obtain two ideals I1 ⊋ I2 in A max, but this is a
contradiction because the ideals in A max are incomparable. Thus the proof is complete. □

We say that a monomial ideal I ⊂ S is said to be Artinian if one has dimk(S/I) <∞ (see
Exercise 2.7). By Corollary 2.2.6, a monomial ideal I⊂ S is Artinian if and only if it has finitely
many standard monomials.

Lemma 2.5.4. Let A be collection of Artinian monomial ideals in S. Then A max is a finite
set.

Proof. By contradiction assume that B = A max is infinite. Choose I1 ∈ B. For each
I ∈ B \ {I1}, since I and I1 are incomparable, it follows that I contains some of the finite number
of standard monomials of I1. As a consequence, there are an infinite number of ideals in B

which contain the same subset of standard monomials of I1. We call this collection B1. Let
J1 ⊂ S be the intersection of the ideals in B1. Notice that J1 is a nonzero monomial ideal.

We will now build a strictly ascending chain of monomial ideals, which will be a contradiction
by Proposition 2.2.10. Suppose Bk and Jk have been chosen. Choose an ideal Ik+1 ∈ Bk. We
can again find an infinite collection of ideals in Bk which have the same nontrivial intersection
with the standard monomials of Ik+1. Let Bk+1 be this collection, and let Jk+1 be the intersection
of the ideals in Bk+1. Since Jk =

⋂
I∈Bk

I, Jk+1 =
⋂
I∈Bk+1

I and Bk ⊃ Bk+1, we clearly have
the inclusion Jk+1 ⊇ Jk. However, we have a proper inclusion Jk+1 ⊋ Jk because Jk+1 contains
some standard monomials of Ik+1. Therefore, with this procedure we get an infinite strictly
ascending chain of monomial ideals in S, which is impossible by Proposition 2.2.10. Thus the
proof is complete. □

Let I⊂ S be a monomial ideal. By Theorem 2.3.1, we have a unique irredundant decomposi-
tion

I =

m⋂
i=1

Qi

where each Qi ⊂ S is an ideal generated by pure powers. From Remark 2.3.4, we know that
each Qi is a primary ideal with respect ideal generated by variables. For each subset J =

{j1, . . . , jk} ⊆ [n] = {1, . . . ,n}, let σJ(I) be the intersection of the Qi’s that are primary with
respect to PJ =

(
xj1 , . . . ,xjk

)
⊂ S. By convention, we have σJ(I) = S if no Qi is PJ-primary.

When σJ(I) is a proper ideals it is PJ-primary due to Exercise 2.8. Then we obtain the following
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primary decomposition
I =

⋂
J⊆[n]

σJ(I).

We call this decomposition the standard primary decomposition of I. Notice that the monomial
generators of σJ(I) only involve the variables in the set {xj | j ∈ J} and that when we regard σJ(I)
as an ideal in the polynomial subring k[xj | j ∈ J] it becomes Artinian.

Proof of Theorem 2.5.1. By Lemma 2.5.3, we may assume that A is an infinite collection
of monomial ideals in S, and we need to show the existence of an infinite chain I1 ⊋ I2 ⊋ · · · of
ideals in A .

For each J⊆ [n], we consider the following collection

σJ(A ) :=
{
σJ(I) | I ∈ A

}
of Artinian monomial ideals in k[xj | j ∈ J].

Let J⊆ [n] be any subset. Then we have the following two cases:
(i) If σJ(A ) is a finite set, then there should be an infinite collection of ideals A ′ ⊂ A such

that σJ(I) is the same for all I ∈ A ′.
(ii) If σJ(A ) is an infinite set, then Lemma 2.5.4 and Lemma 2.5.3 give an infinite family

{Ik}k⩾1 ⊂ A such that σJ(I1)⊋ σJ(I2)⊋ · · · .
In either case, we obtain an infinite family {Ik}k⩾1 ⊂ A such that σJ(I1)⊇ σJ(I2)⊇ ·· · for all
J⊆ [n], although the inclusions need not be proper.

By running the above procedure over each J ⊆ [n] and restricting at each step, we obtain
an infinite family {Ik}k⩾1 ⊂ A such that σJ(I1) ⊇ σJ(I2) ⊇ ·· · for all J ⊆ [n]. Since Ik =⋂

J⊆[n]σJ(Ik), we have an infinite sequence I1 ⊇ I2 ⊇ ·· · in A . As all ideals are different we
should have an infinite sequence I1 ⊋ I2 ⊋ · · · in A . So the proof is complete. □

The theorem of Maclagan has some surprising consequences.

Corollary 2.5.5. There are only finitely many monomial ideals in S with a given Hilbert
series.

Proof. Let H(t) =
∑∞
k=0akt

k ∈ NJtK be a power series. Consider the collection

A :=
{
I⊂ S monomial ideal | HilbS/I(t) =H(t)

}
of monomial ideals with Hilbert series equal to H(t). Notice that, for any two monomial ideals
I ⊆ J in A , we should have I = J (indeed, for all k ⩾ 0, we have Ik ⊆ Jk and dimk(Ik) =(
k+n−1
n−1

)
−ak = dimk(Jk)). Thus every ideal of A is maximal. Finally, by Theorem 2.5.1, we

obtain that A = A max is a finite set. □

Remark 2.5.6. The finiteness result of Corollary 2.5.5 is quite potent. It tells us that many
challenging problems can be reduced to studying finitely many monomial ideals. Just to mention
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one result: the celebrated proof of Hartshorne on the connectedness of Hilbert schemes inherently
relies on the fact that there are finitely many monomial ideals with the same Hilbert polynomial
(see [4,10]).

2.6. Exercises

Exercise 2.1. Let I, J andK be monomial ideals in S. Show that I+(J∩K) = (I+J)∩(I+K).

Exercise 2.2. Let I, J andK be monomial ideals in S. Show that I∩(J+K) = (I∩J)+(I∩K).

Exercise 2.3. Show that a monomial ideal I⊂ S is a prime ideal if and only if I is generated
by a subset of the variables.

Exercise 2.4. Let I,J⊂ S be monomial ideals. Show that I : J∞ is also a monomial ideal.

Exercise 2.5. Let I⊂ S be a monomial ideal. Show that
√
I is also a monomial ideal.

Exercise 2.6. Let f1, . . . ,fm ∈ S be polynomials such that (f1, . . . ,fm) ̸= S. Show that
f1, . . . ,fm form a regular sequence if and only if f1 ̸= 0 and (f1, . . . ,fi−1) : fi = (f1, . . . ,fi−1) for
i⩾ 2.

Exercise 2.7. Let I⊂ S be a proper monomial ideal. Show that the following conditions are
equivalent:

(a) I is Artinian.
(b) I is m-primary where m= (x1, . . . ,xn) is the ideal generated by all variables.
(c) For each 1 ⩽ i⩽ n, there is some ai ⩾ 1 such that xaii ∈ I.

Exercise 2.8. Let P ⊂ S be a prime ideal and I,J be two P-primary ideals. Show that I∩ J is
a P-primary ideal.

Exercise 2.9. Let X⊂ Ank and Y ⊂ Amk be varieties determined by monomial ideals. Consider
the product variety Z= X×Y ⊂ Ank ×Amk

∼= An+mk . Notice that Z⊂ An+mk is also determined by
a monomial ideal. Show that

dim(Z) = dim(X)+dim(Y) and deg(Z) = deg(X) ·deg(Y).
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Gröbner bases

The instructions for this chapter are:

• Read [3, Chapter 2].
• Read [5, Chapter 2].

Here we shall only present relevant results without proofs.

3.1. Monomial orders

Let X be a set. A partial order on X is a binary relation ⩽ over X which is reflexive,
antisymmetric and transitive. That is, for all a,b,c ∈ X we have

• a⩽ a (reflexivity);
• if a⩽ b and b⩽ a, then a= b (antisymmetry);
• if a⩽ b and b⩽ c, then a⩽ c (transitivity).

It is common to write a < b if a ⩽ b and a ̸= b. We also write a ⩾ b (a > b), if b ⩽ a

(b < a). A typical example of a partially ordered set is the set of all subsets of a given set ordered
by inclusion.

A partial order ⩽ on X is called a total order, if for any two elements a,b ∈ X one has a⩽ b

or b⩽ a.
Let k be a field and S= k[x1, . . . ,xn]. We now define a total order on Mon(S), the set of all

monomials in S, which respects the multiplicative structure on this set.

Definition 3.1.1. A monomial order on S is a total order ⩽ on Mon(S) with the properties:

(i) 1 ⩽ u for all u ∈ Mon(S).
(ii) If u,v ∈ Mon(S) and u⩽ v, then uw⩽ vw for all w ∈ Mon(S).

A monomial order satisfies the following two conditions.

Lemma 3.1.2. Let < be a monomial order on S. Then the following holds:

(i) If u,v ∈ Mon(S) with u | v, then u⩽ v.
(ii) (Artinian order) If u1,u2, . . . is a sequence of monomials with u1 ⩾ u2 ⩾ · · · , then there

exists an integerm such that ui = um for all i⩾m.

Proof. (i) If u | v, then there exists a monomialw such that v= uw. Since 1 ⩽w, it follows
that u⩽wu= v.
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(ii) Let M= {u1,u2, . . .}. By Dickson’s lemma (Theorem 2.2.2) this set has, with respect to
divisibility, only a finite number of minimal elements, say ui1 , . . . ,uir with i1 < i2 < · · · < ir.
Let j be any integer ⩾ ir. Then there exists an integer 1 ⩽ k⩽ r such that uik | uj. By part (i),
this implies that uik ⩽ uj. Hence uik ⩾ uir ⩾ uj ⩾ uik , and so uj = uir . Therefore we may
choosem= ir. □

The fact that a monomial order induces a well-ordering on Mon(S) is assumed as a condition
in the definition of monomial orders given in [3, Definition 1, page 55]. This assumption is not
necessary as it follows from Dickson’s lemma.

Remark 3.1.3. Let < be a monomial order. Then < is a well-ordering on Mon(S). This
means that every nonempty subset of Mon(S) has a smallest element under <. In other words, if
M⊂ Mon(S) is nonempty, then there is w ∈M such that v > w for every v ̸=w in M.

Proof. Let M⊂ Mon(S) be a subset of monomials. By Dickson’s lemma (Theorem 2.2.2),
we have Mmin = {u1, . . . ,ur}. Since a monomial order is multiplicative, for any u ∈M, we get
u⩾ ui for some 1 ⩽ i⩽ r. Therefore, by taking u0 to be the smallest element among {u1, . . . ,ur}
with respect to the monomial order <, it follows that u0 is the smallest element of M. □

3.2. Basics of Gröbner basis

(Read the recommended references.)

3.3. Hilbert basis theorem

(Read the recommended references.)

3.4. Division algorithm and Buchberger algorithm

(Read the recommended references.)

3.5. Exercises

Exercise 3.1. Let I,J⊂ S be two ideals and < a monomial order on S. Let G,G ′ be Gröbner
bases of I and J, respectively, with respect to <. Prove that if in<(g) and in<(g ′) are relatively
prime for any g ∈ G,g ′ ∈ G, then G∪G ′ is a Gröbner basis of I+ J.

Exercise 3.2. Prove the following statements:

(i) There is a unique monomial order on k[x1].
(ii) Let n⩾ 2. Then there are infinite many monomial orders on S= k[x1, . . . ,xn].

Exercise 3.3. Let I⊂ S be an ideal and< be a monomial order on S. Show that in<
(√
I
)
⊆√

in< (I).
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Exercise 3.4. Let I⊂ S be an ideal and < be a monomial order on S. Prove the following
statements:

(i) If in<(I) is radical, then I is radical.
(ii) If in<(I) is prime, then I is prime.

Exercise 3.5. Let f1, . . . ,fm ∈ S be polynomials and < be a monomial order on S. Assume
that in<(f1), . . . , in<(fm) is a regular sequence. Then prove the following statements:

(i) f1, . . . ,fm is a regular sequence.
(ii) f1, . . . ,fm is a Gröbner basis of I= (f1, . . . ,fm).
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CHAPTER 4

The Algebra–Geometry Dictionary

4.1. Hilbert’s Nullstellensatz (a first quick algebraic proof)

See, e.g., [8, §5]. The proof typically follows by utilizing Zariski’s lemma.

4.2. Hilbert’s Nullstellensatz (a second proof)

We follow the proof from [1].
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