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Introduction

WHAT 1s THIS DOCUMENT?

This set of notes is designed to supply the course material for the course MA522 at North Carolina
State University. This document indicates all the contents of the course. You are strongly advised
to follow the content and instruction of these notes.

We aim to provide a first introduction to Computer Algebra. Computer algebra is a vast area
that borrows and interconnects ideas from several fields of mathematics and computer science.
However, we will focus on computations involving the solutions to systems of polynomial
equations; these solutions are called algebraic varieties. Therefore, this course can be seen as
a first introduction to computational ideas in Algebraic Geometry and Commutative Algebra.
Our main tool will be the notion of Grébner bases and we will see how they reduce complicated
problems to questions relating monomial ideals. Consequently, we will spend some time studying
combinatorial properties of monomial ideals.

The following textbooks will be our primary resources:

— Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and
Commutative Algebra by David Cox, Donal O’Shea, and John Little ([3]).

— Monomial ideals by Jiirgen Herzog and Takayuki Hibi ([5]).

— Using Algebraic Geometry by David Cox, Donal O’Shea, and John Little ([2]).

— Combinatorial commutative algebra by Ezra Miller and Bernd Sturmfels ([9]).

— A course in commutative algebra by Gregor Kemper ([6]).

Throughout this document we following the following conventions:

e N={0,1,2,...}is the set of nonnegative integers.

e Z, ={1,2,...} is the set of positive integers.

e kis a field.

e S =KIxq,...,Xn] is polynomial ring in n. variables x,...,xy, over the field k.
e [k] ={1,....k} forany k > 1.


https://catalog.lib.ncsu.edu/catalog/NCSU3497264
https://catalog.lib.ncsu.edu/catalog/NCSU3497264
https://catalog.lib.ncsu.edu/catalog/NCSU2448935
https://catalog.lib.ncsu.edu/catalog/NCSU2664626
https://catalog.lib.ncsu.edu/catalog/NCSU1762519
https://catalog.lib.ncsu.edu/catalog/NCSU3611596

CHAPTER 1

Polynomial rings, ideals and varieties

This chapter introduces the basic objects we shall study: polynomial rings, ideals and varieties.
In this chapter we essentially follow [3, Chapter 1].

1.1. Polynomial rings
Let k be a field and S = K[x1,...,xn] be a polynomial ring. In most of our situations, the field

k will be:

(i) k = Q the field of rational numbers (a good field for computers to work).
(ii) k =R the field of real numbers (the field of real life).
(iii) k = C the field of complex numbers (our preferred algebraically closed field).

The underlying set of the ring S has the structure of a k-vector space. The basis elements are
the monomials.

DEerINITION 1.1.1. A monomial in S is a product of the form

x

X1
Xl ...Xn

where all of the exponents «;,...,x, € N are nonnegative integers. We shall abbreviate x* =
x‘lx' coxp™ with o = (..., &n ) € N™. The (total) degree of this monomial is given by the sum
deg(x®) = || :=o¢; + -+ on.

Then the elements in the polynomial ring S are the polynomials.

DeriNiTION 1.1.2. A polynomial f € S is a finite linear combination (with coefficients in K)

of monomials. We will write a polynomial f in the form

f - Z C(XX(X, C(x € k
04
where the sum is over a finite number of n-tuples @ = (xq,..., xn).

DEriniTION 1.1.3. Let f =) cox* be a polynomial in S.

(i) We call c the coefficient of the monomial x*.
(ii) If cy # 0, then we call co x* a term of f.
(iii) The (total) degree of f # 0, denoted deg(f), is the maximum |c| such that the coefficient ¢
is nonzero. The (total) degree of the zero polynomial is undefined.
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CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

(iv) If all the terms of f # 0 have the same degree, then we say that f is a homogeneous

polynomial.

When the number of variables is small, we shall use the notation S = K[x], S = k[x,y] or
S =Kk[x,y,z].

ExampLE 1.1.4. (i) 2x% + 17xy322 + 5 is a polynomial in S = Q[x,y,z] of degree 6 and it
has 3 terms. But it is not homogeneous.
(ii) The polynomial 2x° 4+ 17xy3z? + 5z° is homogeneous of degree 6 in S = Q[x,y,z].

The polynomial ring has the following direct sum decomposition
S=EPs with Si==PHk-x~
=1 |ox|=1
In other words, S; is the vector space spanned by the monomials of degree i. With our con-
ventions above, notice that S; is the space of homogeneous polynomials of degree i. With this
decomposition by total degree, we say that S is a graded ring.

We are interested in the following object, which is the geometrical counter part of the
polynomial ring S = K[x1,...,xn].

DeriniTION 1.1.5. We define the n-dimensional affine space over K to be the set
k= {(ar,...,an) [ ay,...,an €k}.

As a set A} is just the n-dimensional k-vector space K™. But we write A} to stress that we will
be employing the Zariski topology (which will be introduced later in Section 1.3).

Now our discussion begs the following question: what is the relation between the polynomial
ring S = KI[xy,...,xn] and the affine space A? Our answer will come from the fact that a
polynomial f € S naturally gives function

f: k" =k, a=(ay,...,an) €k f(a,...,an) €Kk,

by evaluating the polynomial f. We can describe algebraic geometry as the area of mathematics
that studies the set of zeroes of polynomial equations.
The following example shows that some care should be taken when working over a finite field.

We can have a nonzero polynomial that yields the zero function.

ExampLE 1.1.6. Let p > 1 be a prime number, kK = Z/pZ be the field of p elements and
S = K[x]. Consider the nonzero polynomial f(x) =xP —x € S. By Fermat’s little theorem, we
have a? = a(mod p) for all a € Z. Therefore the function f: k — k, a € k— f(a) =aP —a
obtained by evaluating f is the zero function.

The following proposition shows this phenomenon does appear when the field K is infinite.
3
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CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

ProposiTION 1.1.7. Suppose K is an infinite field and f € S = K[x{,...,xn] is a polynomial.
Then f =0in S if and only if f : K® — K is the zero function.

Before proving the proposition, we need the following basic result from linear algebra.

LemMa 1.1.8 (Vandermonde determinant). Let vy,...,vim € K be elements in K and consider

the following matrix

2 m—1
I vi vi - v
2 m—1
I vo vy - v,
2 m—1
V=V,...,vm):=|1 v3 v3 - V3
2 m—1
I v vy, Vi

Then det(V) = H1<i<j<m(v5 —Vi).

Proor. We proceed by induction on m. For m = 2, it is clear that det(V) = v, —v;. Sub-
tracting to the j-column the (j — 1)-column multiplied by v, we obtain det(V) = det(V') where

1 0 0 0

1 va—vi Vi—vivy -0 vy 2
VvV = |1 vi—w v%—v1v3 vg“_l—vlvg“_z

1 vin—vi V2 —vivy oo vy ym=2

Let V" be the (m—1) x (m — 1) matrix obtained by deleting the first row and the first column of
V’. Then, expanding across the first column of V'’ shows that det(V) = det(V') = det(V"). Notice
that if we divide i-row of V" by vi ;| —vy forall 1 <1< m—1, then we get the Vandermonde
matrix V(vy,...,vin). Hence by the inductive hypothesis, we obtain

m m m m

det(V) =] [vi—vi)-det(V(va,...ovm)) =] Jvi—vi)- [] vi—w)= ] (v—w,
i=2 i=2 2<i<j<m 1<i<j<m

as required. U

CorOLLARY 1.1.9. Let f = cqx4 4 cq_ x4 +--- +¢o € k[x] be a polynomial of degree d.

Then f can have at most d distinct roots.

Proor. By contradiction, suppose that f has d 4 1 distinct roots; say v, va,...,vg4+1 € K with
f(vi) = 0 and v; # vj for i # j. Consider the Vandermonde matrix V = V(v1,...,vq,va41). We
4



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

can form the following linear system

1 v vioo
1 1
2 d Co f(vl) 0
1 v 1% V5
1 v v% v§1 — —
: : Cd—1 f(va) 0
) d Cd f(var1) 0
1 v v Y
d+1  Vd41 d+1

From Lemma 1.1.8 and the fact that all the v; are distinct, it follows thatdet(V) =] [, ; <j<dt1 (vj—
v;) # 0. Therefore, since V is an invertible matrix, we have ¢y = --- = ¢q = 0. This means that

f =0 € K[x] is the zero polynomial, a contradiction. O
Now we are ready for the proof of Proposition 1.1.7.

Proor or ProprosiTiON 1.1.7. If f = 0 is the zero polynomial in S, then it is clear that f :
k™ — Kk is the zero function. Hence we only need to show the reverse implication.

Suppose that f : K™ — k is the zero function. We proceed by induction on the number of
variables n.. If n = 1, then Corollary 1.1.9 yields that f =0 in S (because we are assuming K is

an infinite field). Thus assume n > 2. We can write
(54
f(x1,...,xn) = Z Gi(X1s- s Xn_1) Xh,
i=0

where each gi(x1,...,Xxn_1) is a polynomial in K[x{,...,xn_1]. Let a = (aj,...,an_1) € k™!

be any tuple and consider the polynomial
e
falxn) = D gilan....an-1)x}, € Klxnl.
i=0

For any v € K, by assumption fq(v) = f(ay,...,an_1,v) =0, and so Corollary 1.1.9 implies that
fa(xn) = 0 in K[x,]. Hence we showed that g;(aj,...,an_;) =0 forany (aj,...,an_1) € K™ 1.
By the induction hypothesis, we get gi(x1,...,Xn—_1) =0 in K[x{,...,xn_1]. Finally, it follows
that f =0in S. O

CoroLLARY 1.1.10. Suppose K is an infinite field and let f,g € S be two polynomials. Then
f=ginSifandonly if f : K* — K and g : K™ — K are the same function.

Proor. Apply Proposition 1.1.7 to the polynomial f —g € S. U

Below is the basic geometrical object we shall study.

DeriniTiON 1.1.11. Let fy,...,fs € S be polynomials. The affine variety defined by fy,...,fs
is given by
V(fy,....fs) == {(ai,....,an) €K™ [fi(ay,...,an) =0forall 1 <i<s} C AL
5



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

To close this section, we recall the following result.

Tueorem 1.1.12 (Fundamental theorem of algebra). Every nonconstant polynomial f € C[x]
has a root in C (i.e., C is algebraically closed).

Consequently, the variety V(f) defined by a nonconstant polynomial f € C[x] with complex
coeflicients is nonempty. Notice that the above theorem does not hold for the real numbers. For

instance, the polynomial x2+ 1 € R[x] does not have any root in R.

1.2. Ideals

We now introduce the basic algebraic objects that we study.

DEerINITION 1.2.1. A subset I C S =K[x1,...,xn] is an ideal if it satisfies:
(G 0el
(i) Iff,g€ I, then f+g € L.
(iii) If f e Iand h € S, then hf € L.

We say that I is a proper ideal if I C S and that I is the unit ideal if I = S. Notice that I =S
is the unit ideal if and only if 1 € I. A natural way to present an ideal is by utilizing generators:

DeriniTION 1.2.2. Let fy,...,fs € S be polynomials. Then we write
S
(Frofe) = { Y hifi R, ho€ ST
i=1

More generally, given any (possibly infinite) set A C S of polynomials, we also write
S
(A) = { Y hifils>1Lf,. foeAandhy,.. hoe S}
i=1

If we are given two ideals I C S and | C S, then we have the following basic operations:
(D) I+]:={f+glfelge]} (sum).
2) InJ:= {f eS|felandfe ]} (intersection).
3) [J={figi1+--+fsgs|s > 1,f,....fs €land gy,...,gs € J } (product).
Notice that by definition we always have I] C IN]J.

The lemma below tells us that ideals behave well under these operations.

Lemma 1.2.3. (i) The sum 1+ ] of two ideals 1,] C S is an ideal.
(ii) (f1,...,fs) is an ideal for any polynomials f1,...,fs € S. Then, we shall say that (f1,...,fs)
is the ideal generated by the polynomials f,...,f.
(iii) The intersection IN] of two ideals 1,] C S is an ideal.
(iv) The product 1-] (also written 1J) of two ideals 1,] C S is an ideal.
(v) (A) is an ideal for any set of polynomials A C S.
6



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

Proor. (i) We check the three conditions of Definition 1.2.1. Notice that 0 € I+ ] because by
assumption 0 € T and 0 € J, and, of course, 0 =0+ 0. Let f,g € I+ ]. By definition, f = f; + g
and g = f, 4 g, with f|,f; € T and g1,g; € J. Then we can write

f+g = (fi+f2)+(g91+92).

As T and ] are ideals, we have f{ +f, € [ and g; + g, € ], and thus f+ g € I+]. Similarly, for
any h € S, we obtain that hf = hf; +hg; is in [ 4] because I and | are ideals. This completes
the proof that I 4 J is an ideal.

(i) It is easy to check that (f;) is an ideal for each 1 <1< s. Notice that (fy,...,fs) =3 ;_,(fi)
(see Exercise 1.8). Therefore part (i) implies that (fy,...,fs) is an ideal.

(iii) Left as an exercise in Exercise 1.1.

(iv) Left as an exercise in Exercise 1.2.

(v) Left as an exercise in Exercise 1.3. ]

Given an ideal I C S, the radical of 1 is given by
V1 = {feS|f*elforsomek > 1}.

We say 1 is a radical ideal if I = v/I. We shall see that radical ideals are the algebraic counter part
of varieties. We leave as an exercise to show some of the properties of radicals (see Exercise 1.9).

ExampLE 1.2.4. Let S =K[x,y].

() 1= (x,y) and ] = (2> +x), then [+ ] = (x,y,2> +x) = (x,y,2?).
(ii) If I = (xy) and ] = (x?), then INJ = (x%y) and 1] = (x’y).
(i) If I = (x2,y?), then I = (x,y).
(v) If 1= (x?) and ] = (y?), then IN] = (x*y?) =1J.

Given two ideals I,] C S, we have the ideal quotient
[:]:={feS|fgelforallge]}
and the saturation ideal -
L] =I5
k=1

The fact that I : ] is an ideal follows straightforwardly by checking the conditions of Definition 1.2.1.
Since J**1 c JK, we get I: J* € I: J**! (see Exercise 1.10(i)), and then Exercise 1.6 implies that
[:J%° is an ideal.

The following classes of ideals will play an important role.

DeriniTION 1.2.5. Let [ C S be a proper ideal.

(i) Lis prime if whenever f,g € S and fg € I, then either f € L or g € .
7



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

(ii) Iis maximal if it is maximal with respect to inclusion among proper ideals (i.e., if ] C S is
another ideal with I C J, then either [ =] or ] = S).

(iii) Iis primary if whenever f,g € S and fg € I, then either f € I or some power g™ € I for
some m > 0.

LeEmMMA 1.2.6. A prime ideal is radical.

Proor. Let P C S be a prime ideal. Let f € /P, that is, f* € P for some k > 0. By the
definition of prime ideal, since f* =f.f*1 c P wehave f € Por f*! € P. Thus inductively
we should get f € P. U

LemmA 1.2.7. A maximal ideal is a prime ideal.

Proor. Let I C S be a maximal ideal. Let f,g € S with fg € 1. Suppose that f ¢ I. Then I: f
is a proper ideal because f ¢ I is equivalentto 1 ¢ I: f. Since I: f D I (see Exercise 1.10(ii)), the
maximality of I yields the equality I : f =1. As fg € I, it follows that g € I : f = I. Therefore, I
is a prime ideal. U

Lemma 1.2.8. If I is a primary ideal, then \/1 is prime and is the smallest prime ideal

containing 1.

Proor. Let P=+/I. Let f, g€ Swithfge /1, that is, there is some m > 0 such that fkgk el.
Applying the definition of primary ideal to the elements f* and g¥, it follows that either f* € I or
™ ¢ I for some m > 0. This means that either f € v/I or g € /1. So P is a prime ideal.

Let P’ C S be a prime ideal containing I. Then it follows that P’ = v/P’ O /1 = P. This
means that P is the smallest prime containing I. U

DerintTioN 1.2.9. If I C S is primary and P = /1, then we say that I is P-primary.

1.3. Zariski topology

We start with the definition of varieties.

DerintTioN 1.3.1. Let I C S =K[xy,...,Xn] be an ideal. The affine variety defined by I is
given by

V(D) := {(aj,...,an) €K™ [f(a,...,an) =0forall f € I} C A}.

Notice that if f{,...,fs € S are polynomials and I = (fy,...,fs) is the ideal generated by them,
then clearly V(I) = V(fy,...,fs). Any possible discrepancy between the above definition and
Definition 1.1.11 will be removed when prove the Hilbert basis theorem; indeed, we shall show
that any ideal in S is generated by finitely many polynomials. It clear from the definition that for
any two ideals I,] C S, if I C J, then V(I) D V(]) (i.e., V(—) reverses inclusions).

8



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

DeriniTION 1.3.2. A topology on a set X is given by declaring some subsets of X to be closed,
such that the following properties hold:

(a) The empty set () and the whole space X are closed.
(b) Arbitrary intersections of closed sets are closed.

(c) Finite unions of closed sets are closed.

Let {17\} Aen De a (possibly infinite) collection of ideals in S. Then we can consider the sum
and the intersection

> L= <UI7\>CS and (L CS.

AEA A AEA

The next lemma describes how the operation V(—) behaves with respect to sums and inter-
sections of ideals.

Lemma 1.3.3. (i) Let {17\};\ e be a (possibly infinite) collection of ideals in S. Then we
have the equality

% (Z h) = (v cAL
AEA AEA
(ii) Let 1y,...,Ix be ideals in S. Then we have the equality

k

k k
VITIL| =VvINOL | =Uv(Ey) cAR
j=1 j=1 j=1

Proor. Let a = (ay...,an) € kK™

(i) We have that a € (o V (1) if and only if fy(a) =0 for all f, € I), and A € A. Recall
that a polynomial f in } ,_, I, is by definition of the form

f =1 ++H,
with f), € I, and Aq,...,Ax € A. As a consequence, we obtain the equivalence

fla)=0 forallerI;\ — f(a) =0 forall f, € I and A € A.
AEA

This shows the required equality.

(ii) By induction we can assume that k = 2 (see Exercise 1.8). Since I;I, C I1 NI, C Ij, we
obtain

V(L) D V(L NT) D V(L) for1<j<2.

Taking the union yields the inclusions V(I11,) D V(I; Nlp) D V(I;) U V(I,). Therefore, to
conclude the proof it suffices to show the reverse inclusion V(I;) U V(1) D V(I;1»).

Suppose that a € V(I;1,). Hence, by definition, (f-g)(a) =f(a)g(a) =0 for all f € I; and
gel. IfaeV(l), then a € V(I;) C V(I;)UV(I;) and we are done. Thus we may assume

9



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

a ¢ V(I;) and so there is a polynomial f’ € I; such f’(a) # 0. Forall g € I, since f'(a)g(a) =0,
it follows that g(a) = 0. This means precisely that a € V(I ). Therefore, we proved the inclusion
V(I1I;) € V(I;)UV(I,), and this concludes the proof. O

DeriniTION-PROPOSITION 1.3.4. The vector space K™ has a topology where the closed subsets
are affine varieties. This topology is called the Zariski topology. The space K™ when is endowed
with the Zariski topology is called the affine n-space AL.

Proor. We need to show that algebraic varieties satisfy the three condition of Definition 1.3.2.

First we check property (a). The empty set () = I(S) is the set of zeroes of the unit ideal. The
whole space A = I(0) is the set of zeroes of the zero ideal.

Properties (b) and (c) follow from Lemma 1.3.3. [

The following simple example shows that in general the operations V(—) does not commute
with arbitrary intersections of ideals.

ExampLE 1.3.5. Let S = k[x] and consider the infinite collection of ideals Ij = (Xj) C S for
allj > 1. Notice that ();-; Ij = 0 is the zero ideal. On the other hand, we have V(I;) ={0} C Ak
for all j > 1. Therefore we obtain

VAL ] =A # 0=V (5).

j>1 j>1

This shows that the finiteness assumption in Lemma 1.3.3(ii) is essential.
We now introduce the “inverse” operation to V(—).
DEerINITION 1.3.6. Let X C Ay be an affine variety. Then the ideal of X is given by
I(X) := {feS|f(a)=0forallae X} CS
(see Exercise 1.11).

ExampLE 1.3.7. In general, we trivially have I(()) = S. If the field K is infinite, then we have
I(AR) = 0. Also, see Exercise 1.12.

Let I C S be an ideal and X C Al be a variety. Then we can perform the following operations
IcS —» VIOcAr ~ IvI)cs

and
XcAr — IX)cS — V(I(X))CAL.

These operations satisfy the following:

Lemma 1.3.8. Let 1 C S be an ideal and X C Ay be a variety. Then:

(1) I c I(V(I)) and the inclusion can be strict (see Example 1.3.9).
10



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES
i) X = V(I(X)).

Proor. (i) Let f € I. We need to show that f(a) =0 for all a € V(I) C AZ. Since a € V(I)
if and only if g(a) =0 for all g € 1, it clearly follows that f(a) = 0. Hence I C I(V(I)).

(ii) First we show X C V(I(X)). Let a € X. We need to show that f(a) =0 forall f € I(X) CS.
Since f € [(X) if and only if f(b) =0 for all b € X, it clearly follows that f(a) = 0. Hence
X C V(I(X)).

We now show the reverse inclusion X D V(I(X)). By definition we can write X = V(]J) C A}
for some ideal ] C S. From part (i) above, we get [(X) = I(V(])) D J. Then the reverse inclusion
property of V(—) gives

V(I(X)) c V(]) = X.
So the equality X = V(I(X)) follows. O

ExampLE 1.3.9. In S = k[x], we have the strict inclusion (x?) C I(V(x?)) = (x).

1.4. Polynomial rings in one variable
The instructions for this section are:
e Read [3, §1.5].
1.5. Exercises

EXERcisE 1.1. Show that the intersection 1N ] of two ideals 1,] C S is an ideal. In fact, show

that a (possibly infinite) intersection of ideals is an ideal.
Exercise 1.2. Show that the product 1-] of two ideals 1,] C S is an ideal.
Exercist 1.3. Show that (A) is an ideal for any set of polynomials A C S.

Exercise 1.4. Let 1,],K C S be ideals. Show that:
(i) I-(J+K)=1IJ+IK
(ii) If IDJorI DK, then IN(J+K)=INJ+INK.

ExERcISE 1.5. Give an example where the union 1U | of two ideals 1,] C S is not an ideal.

EXERCISE 1.6. Let {Ij }j>1 be a sequence of ideals in S such that I; C I for all j > 1. Show
that ;>4 1j is an ideal.

ExeRcise 1.7. Let 1,] C S be ideals. Show that 1+ ] is the smallest ideal containing both 1
and J.

Exercisk 1.8. Given three ideals 1,],K C S. Show the following (associativity) equalities
i) (I+])+K=I+(J+X).
(i) (IN])NK=IN(JNK).
11



CHAPTER 1. POLYNOMIAL RINGS, IDEALS AND VARIETIES

(i) (I-])-K=1I-(J-K).
Therefore, for a sequence 11,...,Ix C S, we have well-defined ideals Z};l I; CS, ﬂ};l I CS
and H}ll I; C S giving the sum, intersection and product, respectively.

ExErcisi 1.9. Let 1,] C S be ideals. Show that:

@) V1is an ideal.
(i) VVI= VL
(iii) vINT = VI =vINy]J.
(iv) If1 C ], then V1 C /7.
) VI+V] CVI+] and V/VI+V] = VI+].
vi) V(VI) =V(I) C AL

Exerciski 1.10. Let 1,],K C S be ideals. Show that:
) If] C K, then 1:] S 1: K.
Gi) T (1:]).
(i) (I1:])-] C L
@iv) (I:]): K= (I:JK)=(I:K):]J.
) If1y,...,1s C S are ideals, then <ﬂ)§:1 I]-> ] = ﬂjszl (Li:]).
Vi) If J1,...,]s C S are ideals, then 1: (3_;_;Ji) =iy (L: J1).

ExercisE 1.11. Let X C AR be an affine variety. Show that 1(X) C S is an ideal.

ExERCISE 1.12. Let p > 1 be a prime number, K = Z/pZ be the field of p elements and
S =K[x]. Show that I(A}) = (xP —x) € S.

Exercisk 1.13. Show that the following subsets are not affine varieties:
(i) X=Z"CAgx.
(i) X =Ag\{(0,...,0)} C Ag.
(iii) X={(a,b) € A3 | b =sin(a)} C AZ.
(iv) X={(a,b) € A4 |b=e} C AZ.

ExEercisg 1.14. Let X C A and Y C ALY, Show that the Cartesian product X x Y C Alf X Ag* =

ART™ is also an affine variety.

ExERcisk 1.15. Identify AJM™ with the space of m X 1 matrices, and let v > 0. Show that the

set of matrices with rank < 7 is an affine variety in AZ"™.
EXERCISE 1.16. Show that a finite set of points in A is an affine variety.

ExErcISE 1.17. Show that the only affine varieties in All( are (a) the empty set, (b) the whole
space Aﬂ(, and (c) a finite set of points.
12
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ExERciSE 1.18. This exercise shows that affine varieties are not stable under projections.
Consider the affine variety C = {(a,b) € A%2 |a?+b% = 1} (the circle of radius 1) and the
natural projection Tt : A% — AL, (a,b) — a that forgets the second coordinate. Show that the set
71(C) C Ak is not an affine variety.

13



CHAPTER 2

Algebra and combinatorics of monomial ideals

Throughout this chapter, we continue using the previous notation: S = K[xy,...,Xx,] is a
polynomial ring in n variables over a field k. We use the notation x* = x?‘ -ooxp™ for any

a:=(ap,...,an) € N™
2.1. Basic properties of monomial ideals

The instructions for this section are:
e Read [5, §1.1].
e Read [5, §1.2].
e Read [5, §1.3.1].

2.2. Dickson’s lemma

In this section, we present one of the central results we shall need.

Denote by Mon(S) ={x* = x‘ll' ~xi* la=(ay,...,an) € N"} the set of monomial in the
polynomial ring S = K[xj,...,xn]. For any polynomial f =} ,_\ncaX® € S, we denote the
support of f by

supp(f) := {x* € Mon(S)|ca #0}.
Let M be a nonempty subset of Mon(S). A monomial x* € M is said to be a minimal element of
M with respect to divisibility if whenever x” | x® with x? € M, then xP = x2. Let M™™" denote

the set of minimal elements of M.
DeriniTION 2.2.1. Anideal I C S is called a monomial ideal if it is generated by monomials.
The following result tells us that the set of monomials Mon(S) is “almost well-ordered” with
respect to divisibility.

Tueorem 2.2.2 (Dickson lemma). Let M be a nonempty subset of Mon(S). Then M™™" is a

finite set.

Proor. We prove Dickson’s lemma by induction on n, the number of variables of S. If n =1,
then M consists of certain powers of x;, and the set of minimal elements of M is the set {x{},
where c is the smallest number such that x{ € M.

Now assume that n > 2. Let N be the set of monomials

N o= {x=x{" % €kixpyo 1] | xx4 € M for some d >0 }.

14
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By the induction hypothesis, the set N™" of minimal elements of N is finite, say N™" =
(x%,...,x} C K[x1,...,Xn_1] for some ¢,...,¢; € N*~!. For each x¢ there exists a; > 0 such
that x%ixnt € M™", Let a = max{a,...,a,}, and for each b with 0 < b < a let

Np = {x° € Kx,....xn—1] | xx5 € M}.
Again by the induction hypothesis, Ng‘i“ is a finite set. We use the notation
Niny b — {XCXF1 | x“ € N{?in}.

We claim that

a—1
MM X8, x xS} U U Nfniny b
b=0
Since the right-hand side of this inclusion is a finite set, the assertion of the theorem follows from
this claim.

In order to prove the claim, let u = chﬁ be a monomial in M. If d > a, then some monomial

in {x“1xn!,...,x"xq"} divides u. If 0 < d < @, then u is divisible by a monomial in NTi"x4.

This completes the proof of the theorem. U

The next corollary tells us that monomial ideals are finitely generated. This is a special case
of Hilbert basis theorem for monomial ideals.

CoroLLARY 2.2.3 (Hilbert basis theorem for monomial ideals). Let I be a monomial ideal.

Then each set of monomial generators of | contains a finite set which generates 1.

Proor. Let M be a set of monomial generators of I. By Theorem 2.2.2, the set of minimal
elements of M is finite. This finite set is a set of monomial generators of I. U

Below a list of basic results regarding monomial ideals. The proofs are pretty straightforward
and the reader is referred to [5, §1.1].

THEOREM 2.2.4. Let I C S be a monomial ideal. The set N of monomials belonging to 1 is a
K-basis of 1.

CoRroLLARY 2.2.5. Let I C S be an ideal. The following conditions are equivalent:

(a) I is a monomial ideal.
(b) Forall f € S one has: f € Lif and only if supp(f) C L

CoROLLARY 2.2.6. Let I be a monomial ideal. The residue classes of the monomials not
belonging to 1 form a K-basis of the residue class ring S/1. (The monomials that do not belong

to I are called standard.)

The set of monomials which belong to I can be described as follows:
15
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ProrosiTION 2.2.7. Let {uy,...,wn} be a monomial system of generators of the monomial
ideal 1. Then a monomial v € Mon(S) belongs to 1 if and only if there exists a monomial w such

that v =wu, for some 1 <1< m.

ProposiTioN 2.2.8. Each monomial ideal has a unique minimal monomial set of generators.
More precisely, let G denote the set of monomials in 1 which are minimal with respect to divisibility.

Then G is the unique minimal set of monomial generators.
As a consequence we make the following definition.

DEeriNITION 2.2.9. The unique minimal set of monomial generators of the monomial ideal I
is denoted by G(I) C Mon(S).

As another consequence of Dickson’s lemma we have a “Noetherian property” for monomial

ideals.

ProposiTion 2.2.10. Each ascending sequence of monomial ideals Iy CIp C--- C L C---

in S terminates, that is, there exists an integer X such that Iy = Iy forall 1 > k.

Proor. Let M = U;’il G(Ij). According to Dickson’s lemma (see Theorem 2.2.2), the set
M™in is finite. Hence there is an integer k such that M™" C U};l G(I;). Now let 1 > k and
let u be a monomial in [;. Then there exists v.€ M™" which divides u. This implies that
ue U};l I; = Iy, as desired. d

We close this section with some basic properties of monomial ideals. Given two monomials
u=x"--xp" and v = xlfl ---x2" we have the following explicit descriptions

it S
ged(w,v) = xMmlarbil, minlan.bo]

and

lem(u,v) = xrlnaX{al’bl} - xmax{an bn},
We saw that the generators of the product or the sum of ideals are easy to find. On the other hand,
it is difficult to find the generators of an intersection. However, in the case of ideals this process

is quite explicit.
LEmMA 2.2.11. Let I and | be monomial ideals. Then 1N ] is a monomial ideal, and
G = {lem(u,v) |ue G(I) and ve G(])}
is a set of generators of LN 7.

Proor. Let f € IN]. By Corollary 2.2.5, since I and | are monomial ideals, it follows that
supp(f) C IN7J. Again applying Corollary 2.2.5, we see that IN] is a monomial ideal.
Let w € Mon(S) be a monomial in INJ. Due to Proposition 2.2.7, there exist uw € G(I) and
v € G(J) such that u | w and v | w. It follows that lcm(u,v) divides w. Since lcm(u,v) € IN]J
for all w € G(I) and v € G(J), we conclude that G is indeed a set of generators of IN7J. O
16
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Similarly, computing ideals quotients is difficult in general. However, for monomial ideals,

the task is quite explicit.

LemMmA 2.2.12. Let I and ] be monomial ideals. Then 1: ] is a monomial ideal, and

[:] = ﬂ [:v.

veG(])

Moreover, {u/ gcd(u,v) |uw € G(I)} is a set of generators of 1:v.

Proor. Let f € I:]. Then fv € I for all v € G(]). In view of Corollary 2.2.5 we have
supp(f)v = supp(fv) C I. This implies that supp(f) C I:J. Thus Corollary 2.2.5 yields that I : |
is a monomial ideal.

The given presentation follows from Exercise 1.10. It is clear that {u/ gcd(u,v) |u e G(I)} C
[:v. Sonow letw € I :v. Then there exists u € G(I) such that u divides wv. This implies that
u/ ged(u,v) divides w, as desired. O

2.3. Primary decomposition of monomial ideals

In this section, we discuss the notion of primary decomposition for monomial ideals. A
decomposition of an ideal I C S as an intersection [ = (-, Q; of ideals is called irredundant if
none of the ideals Q; can be omitted in this presentation. The following important theorem does

the job for monomial ideals.

THEOREM 2.3.1. Let I C S =K[x1,...,xn] be a monomial ideal. Then 1 = ﬂ{ll Qi, where
each Q; is generated by pure powers of the variables. In other words, each Q; is of the form
(Xial .. ,xiakk) C S. Moreover, an irredundant decomposition of this form is unique.

Proor. Let G(I) ={uy,...,u,}, and suppose some 1 is not a pure power, say u;. Then
we can write u; = vw where v and w are coprime monomials, that is, gcd(v,w) = 1 and
u=# 1 #w. We claim that I = I; NI, where [} = (v,u,,...,1;) and I, = (w,u,,...,1;). Indeed,
since u and v are coprime, Lemma 2.2.11 yields the equality I; NI, = (lem(v,w),us,...,u;) =
(ul,uz, . ,ur) =1

If either G(I;) or G(I,) contains an element which is not a pure power, we proceed as before
and obtain after a finite number of steps a presentation of I as an intersection of monomial ideals
generated by pure powers. By omitting those ideals which contain the intersection of the others
we end up with an irredundant intersection.

So it remains to show uniqueness. Let Q1 N---NQr =I1=Q]N---NQ; be two irredundant
intersections of ideals generated by pure powers. We will show that for each 1 < 1 < r there exists
1 <j < s such that Qj’ C Qi . By symmetry we then also have that for each 1 < k < s there exists
an 1 <1< rsuch that Q; C Qy. This will then imply that r = s and {Q,..., Q+} ={Q7,..., Q¢}.

17
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Let 1 <1< 1. We may assume that Q; = (x?l,...,xﬁk). Suppose that Qj’ ¢ Q; for all
1 <j <s. Then for each j there exists xz_j € Qj’ \ Q;. It follows that either 4 >korb; < ay. Let

— bl bs
u = lcm{x(Zl s Xl

We have u € (_; Qf =1 C Qi. Therefore there exists 1 < ¢ < k such that xc© divides u. But
this is obviously impossible, and so the proof is complete. 0

A monomial ideal is called irreducible if it cannot be written as proper intersection of two
other monomial ideals. Equivalently, I is irreducible if whenever I = I; NI, then either I = I, or

I =1,. Itis called reducible if it is not irreducible.

CoroLLARY 2.3.2. A monomial ideal is irreducible if and only if it is generated by pure

powers of the variables.

Proor. Let Q = (xia1 T xsl‘ ). Suppose Q = INJ where I and ] are monomial ideals properly
containing Q. By Theorem 2.3.1, we have two irredundant decompositions I =();_; Q; and
] = ﬂjszl Q]-’ where the Q; and Qj’ are generated by powers of the variables. Thus we get the

decomposition
T S
Q=g
i=1 j=1

The uniqueness statement of Theorem 2.3.1 implies that r =s=1and Q = Q; = Q. Thisis a
contradiction.
Conversely, if G(Q) contains a monomial u = vw with ged(v,w) =1 and v # 1 # w, then,

as in the proof of Theorem 2.3.1, Q can be written a proper intersection of monomial ideals. [J
LemmA 2.3.3. Let I C S be an irreducible monomial ideal. Then 1 is primary.

Proor. Let f,g € S and fg € 1. By Proposition 2.2.10, we have I: g*®° = U;’il I:g=1:g™
for some m > 0; in particular, I : gm+1 =I:g™

We claim that we have the equality (I+ (f)) N (I+(g™)) = L. Itis clear that (I4 (f)) N (I+
(g™) DL Lethe (I+(f))N(I+(g™)). Then we can write h = h; + af = h, +bg™, where
hi,hy € I and a,b € S. Multiplying by g yields the equality

hig+afg—h,g = bg™'!,

and since hy,fg,h, € I, it follows that b € I : g™*!. From the assumption I : g™*! =1: g™, we
obtain hs = bg™ € I. Then dividing by g yields the equality

hi+af—hy = hj,

from which we conclude that af € I. As a consequence, h = hj 4 af € I, and so we get the claim
I+ () NI+ (g™) =L
18
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Since 1 is irreducible, we obtain either I = I+ (f) or I = I+ (g™). Therefore, either f € I or
g™ € L. This means precisely that I is primary. 0

ReMARK 2.3.4. Corollary 2.3.2 and Lemma 2.3.3 yield that an ideal Q = (xial‘ yee ,x{lkk) CS
generated by pure powers of the variables is primary with respect to the prime ideal v/Q =

(Xil»---»xik) CS.

RemARrk 2.3.5. Theorem 2.3.1 in combination with Corollary 2.3.2 now says that each mono-
mial ideal has a unique decomposition as an irredundant intersection of irreducible monomial

ideals. Moreover, Lemma 2.3.3 tells us that such decomposition is primary.

2.4. Hilbert functions of monomial ideals

In this section, we study the Hilbert functions of monomial ideals. Our main goal is to
provide a self-contained and combinatorial proof of the existence of Hilbert polynomials and
Hilbert series. Our proof will heavily depend on the decomposition of monomial ideals into
ideals generated by pure powers of the variables (see Theorem 2.3.1) and on the fact that we
have distributive law of sums over intersections in the case of monomial ideals (see Exercise 2.1).
Since the dimension of an affine space A} should be n, the following lemma yields a successful
way to define the dimension of the variety determined by a monomial ideal.

DerINITION-LEMMA 2.4.1. Let I C S be a monomial ideal. From Theorem 2.3.1, let [ =
Nit; Qi be an irredundant decomposition where each Q; is generated by pure powers. Then
V(1) is a finite union of affine spaces and its dimension is equal to

dim(V(I)) := max {dim(V(Q))| 1 <i<m}.

Proor. We have that V(1) = U]“ll V(Qi). LetQ; = (x?ll,...,ng) C S. We have the following
equality
V(Qi) = {(br,....bn) EAL by, =--=by, =0} = AL ¥

that proves the claim. 0

DErINITION 2.4.2. An S-module is an Abelian group M on which S acts linearly by a mapping
S x M — M that satisfies the axioms
(i) a(x+y) =ax+ay.
(i) (a+b)x = ax+ bx.
(iii) (ab)x = a(bx).
(iv) 1x =x.
for all a,b € S and x,y € M.
We say that M is a graded S-module, if it has a direct sum decomposition M = ;. M;

as K-vector spaces and S;M; C My, for all i,j € Z. For M and graded S-module and p > 0,
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we consider the graded module M(—p) with graded parts M(—p); = M;_p,. Of particular
interest for us is the free graded module S(—p) defined by S(—p); = Si_p, i.e., for p > 0 the
module S(—p) is shifted p degrees with S(—p), = Sp = k. Given a monomial ideal I C S, from
Theorem 2.2.4 and Corollary 2.2.6, we obtain that

I=@PL and  S/1=PIs/1; = PSi/i;
j=0 j=0 j=0
are graded S-modules where the graded parts are finite dimensional K-vector spaces. We will see

that this is also holds when I is a homogeneous ideal.

DEerINITION 2.4.3. Let M be a graded S-module with finite dimensional parts. The Hilbert

series of M is the following Laurent series

Hilby (1) := ) dimy (M) t*.

Our primary case of interest is the Hilbert series of a quotient ring S/I; in this case, we have a
power series Hilbg 1(t) = 3 ;- dim ([S/T);) tk € N[t] because [S/1],, =0 for k < 0.

Our goal is to prove the following important theorem.

TueoreM 2.4.4 (Hilbert). Let I C S =KI[xy,...,xn] be a monomial ideal and X =V (I) C AL
Let d = dim(X) be the dimension of X. Then the following statements hold:

(i) We have the equality
Q(t)
(1—t)d

where Q(t) € Z[t] is a polynomial with integer coefficients and Q(1) € Z,. is a positive

Hilbg ;(t) =

integer.
(ii) There is a unique polynomial

Zd—1
(d—1)!

(called the Hilbert polynomial of X) of degree d — 1 such that ey = Q(1) and

Px(z) = eg + (lower degree terms) € Q[z]

Px(k) = dimy ([S/T},)

for all k > 0.

DErINITION 2.4.5. Let I C S be a monomial ideal and X = V(I) C All. Then the degree of X
is given by deg(X) = ey = Q(1) where e is the normalized leading coefficient of the Hilbert
polynomial Px(z) and Q(t) is the numerator of the Hilbert series Hilbg /1 (t).

To prove the above far-reaching theorem we shall need several technical results. We start
with an import example.
20
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ExAmPLE 2.4.6. In how many ways can you share k oranges with n people? This is a simple
combinatorial problem whose solution is

(k+n—1) _ (n+k—1)!

n—1 - (n=1Dk!
Equivalently, we can ask how many tuples (aj,...,a,) € N™ do we have such that
a;+---+an=k?

Since the monomials of degree k give a K-basis of Sy, we get
k —1
dimy (Sy) = < o )
n—1

On the other hand, the binomial theorem tells us that

1 = [—n v e mEk—1\ = /mtk—1)
= —t — t — t .
- 2 (e =2 () -2 ()
Therefore, we obtain the appealing fact
1
Hilbs(t) = —— € N|[t].

We have that shifting makes a trivial change in terms of Hilbert series.
LemMA 2.4.7. Let M be a graded S-module with finite graded parts and p > 0. Then

HﬂbM(ip) (t) = tpHﬂbM(p) (t).

)
(I—t)n-

In particular, Hilbg(_,)(t) =

Proor. Making the following simple algebraic manipulation

Hilbyy(_p) (1) = Y dimy (My_p) t* = dimy (M) t*P = tPHilby, ) (t)
keZ keZ

we get the equality. U

We say that an S-linear map ¢ : M — N graded S-modules is graded if ©(My) C Ny for all
ke Z. Let L, M, N be S-modules. We say that we have a short exact sequence

0-LEMEB NSO

if ¢ and \{ are S-linear maps, @ is injective, 1 is surjective and Ker({) = Im(¢@). We say the
short exact sequence is graded if the modules L, M, N and the maps ¢, are all graded.
The next lemma says that Hilbert series are additive.

LEmmA 2.4.8. Let 0 - L — M — N — 0 be a graded short exact sequence of graded
S-modules with finite graded parts. Then

Hilby(t) = Hilby (t) + Hilby (t).
21
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Proor. From the assumptions we get My = L, € Ny. So the required equality
Hilby (t) = ) dimy (M) ) = Y (dimy (L;) +dimy (N;)) t) = Hilbg (t) + Hilby (t)
jeZ jeZ
follows. O

We now discuss an “inclusion-exclusion” type of argument that will allow us to the express

the Hilbert series of an intersection of monomial ideals. The starting point is with two ideals.

LeEMmMA 2.4.9. Let I,] C S be two ideals. Then we have a natural short exact sequence
0—S/IN] % S/IeS/] 5 S/1+] —0,

where @(f+1INJ)=(f+Lf+])and n(f+1,g+]) = (f—g+1+]). Moreover, if l and ] are

monomial ideals (or homogeneous as we will see later), then this short exact sequence is graded.

Proor. For any f+14] € S/I+], we have mt(f + 1,0+ J) = f+ 1+ J; thus the map 7t is
surjective. Forany f+1NJ e S/INJ,if o(f+IN])=(f+Lf+])=(0+1,0+]), thenf € IN]J;
thus the map ¢ is injective.

The inclusion Im(@) C Ker(7) is clear by construction. On the other hand, let (f+1,g+]) €
Ker(7t). This means that f —g € [+, and so we can write f —g = —a+b witha € Tand b € ].
Since f+a=g+b,aecland b € ], it now follows that

o(f+a+INn])=Ff+a+Lg+b+])=(f+Lg+]);

hence (f+1,g+]) € Im(¢@). Therefore, Im(¢) = Ker(7t) and it follows that we have a short
exact sequence.
If T and | are monomial ideals, then the modules S/INJ, S/I®S/], S/1+ ] are graded (see

Theorem 2.2.4 and Corollary 2.2.6) and the maps ¢ and 7t are clearly graded. U
Noration 2.4.10. Given a sequence of monomial ideals Iy,...,I, C S and a subset J C [K],
we define the ideal Iy :=} ;5 I;. If J = (), we set Iy = S. We further specify
E({Ty.....L1) (1) == > (—1)F'Hilbg 1 (t) € N[t].
JCIK]

The next result is only valid for monomial ideals and it uses the distributive law from

Exercise 2.1.

ProrosiTioN 2.4.11. Let 11,...,Ix C S be monomial ideals and consider the intersection
[=1,N---NIx CS. Then we have the equality

Hilbs1(t) = IE({T},..., [} (1).
22



CHAPTER 2. ALGEBRA AND COMBINATORICS OF MONOMIAL IDEALS

Proor. We proceed by induction on k. The case k =1 is clear. From Lemma 2.4.9, we have

the short exact sequence
0—=S/I—=S/Iin---Nhi_1dS/Ix = S/(I1Nn---NIi_y)+ I — 0.
The additivity of Hilbert series (see Lemma 2.4.8) gives the equality

Hﬂbs/l (t) = HﬂbS/IlﬂwﬂIk,l (t)+ HﬂbS/Ik (t)— Hile/(hﬂ‘ﬂIk,l)—i-Ik (t).
Due to Exercise 2.1, we have the distributive equality
(Lin-Nh)+L = (Lhi+L)N---N (T + L).
After applying the inductive hypothesis to the monomial ideals J{ =I;N---NIx_; and J, =
(I + L) N--- N (Ix—; + I ), we obtain
Hllbs/] (t) = Hllbs/]1 (t) + HﬂbS/Ik (t) - Hllbs/]2 (t)
= IE(Iy,..., 1) (1) +Hilbs/1k (t)—IE(I1 + Iy, ..., L1 + L) (1)
= > (=1)FMHilbgp (t) +Hilbs r, (1) + > (—1)F"Hilbg 1, (t)
]

JClk—1] {kICIClk
= IE({I,.... Ik} (t)

whence the result follows. 0

Another necessary ingredient is that of regular sequences. Given an S-module M, we say
that f € S is regular (or a nonzerodivisor) on M if whenever w € M and fw =0 € M then
w=0e M.

DerintTION 2.4.12. A sequence of polynomials fy,...,fy, in S is regular if the two following
conditions hold:

@ (fr.....fm) #S.
(ii) f1 # 0 and f; is regular on S/(fy,...,f;_1) forall i > 2.

The lemma below gives another reason why ideals generated by pure powers of the variables
are quite special.

ProposiTION 2.4.13. Let Q = (xiall, v xf;) C S be an ideal generated by pure powers of the
variables (with i} < --- <1y and a; > 0 for all 1 <j < k). Then the following statements hold:

@) x{ll h... ,xiakk form a regular sequence.

(ii) We have the equality

[T (It 24 t97)
(1—t)

Hlle/Q (t) =

where d =n—k =dim(V(Q)).
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Proor. (i) By Lemma 2.2.12, we have

ap 4G-1\.,9 _ ap aj—1
(xil s Xy ) Xy = (xil s Xy )
. . . a
Hence Exercise 2.6 implies that xial L ,xii‘ form a regular sequence.

(i) Letj > 1. Let ] = (x{....x;)) € Sand J' = (x{....x)

.9 ijil
by convention ]’ = 0). We claim that we have a graded short exact sequence

) C S (when j = 1, we have

0—S/]'(—q;) & S/7" 5 S/]—0,

where @ (f+]’) :x;jf+]’ and t(f+J) =1+7J.

For any f+] € S/J, we have 7t(f 4+ ]') = f 4 J; thus the map 7t is surjective. Notice that
Im(¢@) = Ker(7) because for any T+ ]’ € S/]" we have n(f+]') = f+] =0+ ] if and only if
f+] = x:j g+]J’ for some g € S. We know that ¢ is injective because xi? is regular on S/J’.
Thus we indeed have a short exact sequence.

It remains to show that the short exact sequence is graded. All the considered modules are
graded since we are dealing with monomial ideals. The map 7t is clearly graded. For any f+ ]’ €
[S/]’(—aj)]k = [S/J/]kfaj (ie., f € S is a homogeneous polynomial with deg(f) =k — a;), we
obtain

e(f+]) = x)f+]" € [5/]'];:
so ( is also graded. This concludes the proof that we have a graded short exact sequence.

By combining Lemma 2.4.8 and Lemma 2.4.7, we get

Finally, proceeding inductively and utilizing the initial computation of Example 2.4.6, we obtain

k a
Hilbg o (t) = —H)(_ll(_lt): )
T 0=+t 2 et
B (1—1)"
[T (1 +t+ 24+t
B (11 ’
as required. U

aj

REMARK 2.4.14 (A very simple version of Bezout theorem). Let Q = (Xil -

X =V(Q) C Ag. Then Proposition 2.4.13(ii) yields the formula

.»X{¥) C Sand
k

deg(X) = a;---ax #0.

Our last necessary ingredients is the following structural result regarding power series. First
discuss a well-know characterization of numerical polynomials. Let F : Z — Z be a function. We
24
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define the difference operator by setting (AF)(n) :=F(n+1)—F(n) foralln € Z. Foralli > 1,

we set A'F = A(A'F). Notice that A'F is also a function from the integers to the integers.

LemMA 2.4.15. Let P(z) € Qlz] be a polynomial of degree d— 1. Then the following conditions

are equivalent:

(a) P(k) € Zfor all k € Z (this means that P(z) is a numerical polynomial).
(b) There exist integers qg,...,aq_1 € Z such that

d—1 .
P(z) = Zai<zi”).

Proor. The implication (b) = (a) is clear.

Thus we concentrate on the implication (a) = (b). Notice that the polynomials (Zf‘) form

a Q-basis of Q[z] (this can be proved for instance by utilizing the division algorithm on Ql[z]).

Therefore we can write P(z) = & a; (*TY). The identity (*"1"") — (") = (¥71). Thus we

& [z+i
AP(z) = i ,
(2) ; a <i - 1)
and so applying the difference operator i-times yields

i T (=t
A'P(z) = Zai(]__i)

j=t

have

This implies that a; = A'P(—i—1) € Z, as required. O

LEmMMA 2.4.16. Let H(t) = % =5 % axt € N[t] be a power series where Q(t) € Z[t]

is a polynomial with integer coefficients and Q(1) # 0. Then the following statements hold:

(i) Q(1) € Zy is a positive integer.
(ii) There is a polynomial P(z) = eo% + (lower degree terms) € Q[z] of degree d — 1 such
that eg = Q(1) and P(k) = ay for all k > 0.

Proor. By assumption, we have Q(t) = j"lo cjtj where ¢; € Z is an integer. We can write
Qt) = Zfzo ej(1— t)). It is then clear that ey = Q(1) = Zjnlo ¢j is a nonzero integer. We can

make the expansion

H(t) = &= =Y — T+ g1t
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Let H'(t) = Z]-d:_ol # =2 >0 by t*. Notice that by = ay for k > 0 because Zf’:d ej(1—

t))~4 is a polynomial and so it has finitely many terms. Due to Example 2.4.6, we can expand

d—1
e
H'(t) = ]
j_Zo(l—t)d ]
d—1 00
k —j—1
=0 k=0 )=
_i dle(k+d—1—1> .
— ; L
k=0 \ j=0 d—=j—1

Consider the polynomial P(z) = Zjdz_ol ej (szjfl) € Qlz]. By construction we have that P(k) =
by = ay for k > 0 and that

d—1
P(z) = e (dz 1 + (lower degree terms) € Q[z].
Finally, notice that
. P(k) . oag
So the result follows. ]

We now have all the ingredients to prove Theorem 2.4.4.

ProoOF OF THEOREM 2.4.4. Let I C S =KI[x/,...,xn] be amonomial ideal and X = V(I) C AZ.
Let d = dim(X). By Theorem 2.3.1, let [ = ﬂ};l [; be the irredundant decomposition into ideals
generated by pure powers of the variables. Following Notation 2.4.10, for each subset J C [k],
we set Xy = V/(I3) and dj = dim(Xj), where I3 = Zjeq [; C S. Notice that each Ij is an ideal
generated by pure powers. We also have that dy = dim(X3) < d. By utilizing Proposition 2.4.11
and Proposition 2.4.13, we obtain

Hilbg1(t) = > (—1)7'Hilbg 1, (t)
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where each Q3(t) € Z[t] is a polynomial with integer coefficients. Thus Q(t) € Z[t] is also
a polynomial with integer coefficients. If we show that Q(1) # 0, then the proof would be
completed by Lemma 2.4.16. Indeed, we would obtain that Q(1) € Z and the existence of a
polynomial Px(z) € Q[z] of degree d — 1 with normalized leading coefficient equal to Q(1) and
such that Py (j) = dimy ([s /1]].> for all j > 0.
By contradiction assume Q(1) = 0. Hence we can write Q(t) = (1 —1t)°Q’(t) with Q'(1) #0
1

and ¢ > 1. Notice that Q'(t) = WQ(’C) also have integer coeflicients. Let e = d —c and

observe that Hilbg 1 (t) = ((BL—(:)L From Lemma 2.4.16, we get a polynomial Px(z) € Q[z] of
degree e — 1 such Px (k) = dimy([S/I];) for all j > 0. We may assume that the ideal I} C S is
generated by n— d pure powers of the variables and thus dim(X; ) = d. By applying Lemma 2.4.16
and Proposition 2.4.13 to the ideal I; C S generated by pure powers of the variables, we get
a polynomial Py, (z) € Q[z] of degree d — 1 such that Px, (j) = dimy([S/I;];) for all j > 0.
Since I C Iy, it follows that dimy([S/I;];) < dimy([S/1];) for all j € N (see Theorem 2.2.4 and

Corollary 2.2.6). However, this leads to the following clear contradiction
Px,(G) = dimg([S/Ii];) < dimg([S/1];) = Px(j) forall j>0,
because by assumption deg(Px) =e—1 < d—1=deg(Px,).
Finally, we should have Q(1) # 0, thus concluding the proof of the theorem. 0
2.5. Maclagan’s theorem (an extension of Dickson’s lemma)

Here we discuss an interesting extension of Dickson’s lemma given by Maclagan [7]. Given
any collection of ideals .o/ = {I)\} ac Of ideals in S, we denote by /™ the collection of ideals

is o7 that are maximal with respect to inclusion. We prove the following finiteness theorem.

THEOREM 2.5.1 (Maclagan [7]). Let o/ = {b\}}\ A be a collection of monomial ideals in S.
Then o/ ™ is a finite set.

Notice that if each each I C S is a principal monomial ideal (i.e., generated by one monomial),
then the above theorem is precisely Dickson’s lemma (see Theorem 2.2.2). It should be mentioned

that this finiteness result is false for not monomial ideals as shown by next easy example.

ExampLE 2.5.2. Let S = k[x] with k an infinite field. Consider the infinite collection of
principal ideals & = {Iq} __, With Io = (x—a) C S. Then &/™> = /.

An equivalent formulation of Theorem 2.5.1 is given in the next result.

LemMma 2.5.3. We have that Theorem 2.5.1 holds if and only if for any infinite collection </

of monomial ideals in S there is an infinite chain 1} 2 1, 2 --- of ideals in <.

Proor. Assume that Theorem 2.5.1 holds. Let .« infinite collection of monomial ideals.
Since /™ js a finite set and <7 is infinite, there should be an ideal I} € &/™# such that the
27
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collection @/; ={I € &/ | I} 2 I} is infinite. By applying the same argument, we can choose
I, € &/ such that the collection .2, ={I € .«7] | I, D I} is infinite. Therefore, by proceeding
inductively, we have infinite chain I} D I; D --- of ideals in <7.

On the other hand, suppose that the other condition holds. Let .27 be a collection of monomial
ideals. If &#/™® were infinite, then we would obtain two ideals I; 2 I, in &/™¥, but this is a

contradiction because the ideals in .o7™®* are incomparable. Thus the proof is complete. O

We say that a monomial ideal I C S is said to be Artinian if one has dimy(S/I) < co (see
Exercise 2.7). By Corollary 2.2.6, a monomial ideal I C S is Artinian if and only if it has finitely

many standard monomials.

LEMMaA 2.5.4. Let of be collection of Artinian monomial ideals in S. Then o/™ is a finite

set.

Proor. By contradiction assume that 4 = /™ is infinite. Choose I} € #4. For each
I € #\{1,}, since I and I; are incomparable, it follows that I contains some of the finite number
of standard monomials of I;. As a consequence, there are an infinite number of ideals in %
which contain the same subset of standard monomials of I;. We call this collection %4,. Let
J1 C S be the intersection of the ideals in %;. Notice that J; is a nonzero monomial ideal.

We will now build a strictly ascending chain of monomial ideals, which will be a contradiction
by Proposition 2.2.10. Suppose Hy and Ji have been chosen. Choose an ideal Iy | € Hy. We
can again find an infinite collection of ideals in %) which have the same nontrivial intersection
with the standard monomials of Iy ;. Let %) be this collection, and let Jy, | be the intersection
of the ideals in %y ;. Since Jy = mlegﬁk L = nle%’k+1 [ and %y D Py, 1, we clearly have
the inclusion Jx;1 2 Jx. However, we have a proper inclusion Ji1 2 Jx because Ji4 contains
some standard monomials of Iy ;. Therefore, with this procedure we get an infinite strictly
ascending chain of monomial ideals in S, which is impossible by Proposition 2.2.10. Thus the
proof is complete. 0

Let I C S be a monomial ideal. By Theorem 2.3.1, we have a unique irredundant decomposi-

I=(Q
i1

where each Q; C S is an ideal generated by pure powers. From Remark 2.3.4, we know that

tion

each Q; is a primary ideal with respect ideal generated by variables. For each subset J =

(1,---.Jk) € [n] ={1,...,n}, let o5(I) be the intersection of the Q;’s that are primary with

respect to Py = (xj] - ..,xjk) C S. By convention, we have o3(I) =S if no Q; is Py-primary.

When o75(1) is a proper ideals it is Py-primary due to Exercise 2.8. Then we obtain the following
28
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I= () oz(D.

JCn]

primary decomposition

We call this decomposition the standard primary decomposition of 1. Notice that the monomial
generators of o3 (I) only involve the variables in the set {X; | j € J} and that when we regard o (1)

as an ideal in the polynomial subring K[x; | j € J] it becomes Artinian.

ProoF oF THEOREM 2.5.1. By Lemma 2.5.3, we may assume that .7 is an infinite collection
of monomial ideals in S, and we need to show the existence of an infinite chain I} 2 I, D --- of
ideals in <.

For each §J C [n], we consider the following collection

O'J(Qf) = {O'J(I) BES ,Q{}

of Artinian monomial ideals in K[x; | j € JI.
Let J C [n] be any subset. Then we have the following two cases:
(i) If o3(27) is a finite set, then there should be an infinite collection of ideals ./’ C <7 such
that o5(I) is the same for all I € o7".
(ii) If o5(<7) is an infinite set, then Lemma 2.5.4 and Lemma 2.5.3 give an infinite family
{Ixhk>1 C & such that o3(1;) D o3(L) 2 ---.
In either case, we obtain an infinite family {Iy }x>; C / such that o5(I;) D o5(I) D --- forall
J C [nl], although the inclusions need not be proper.
By running the above procedure over each J C [n] and restricting at each step, we obtain
an infinite family {I}}x>; C &/ such that o3(I;) D o3(I;) D --- for all J C [n]. Since Iy =
ﬂsgn] o5(Ix), we have an infinite sequence I} D I O --- in o/. As all ideals are different we

should have an infinite sequence I} 2 I, 2 --- in .2/. So the proof is complete. U

The theorem of Maclagan has some surprising consequences.

CoROLLARY 2.5.5. There are only finitely many monomial ideals in S with a given Hilbert

series.
Proor. Let H(t) = Y 32, itk € N[t] be a power series. Consider the collection
o = {I C S monomial ideal | Hilbg (t) = H(t)}

of monomial ideals with Hilbert series equal to H(t). Notice that, for any two monomial ideals
[ CJin o, we should have I = | (indeed, for all k > 0, we have Iy C Ji and dimg(Iy) =

(k::‘;l) — ax = dimg(Jx)). Thus every ideal of <7 is maximal. Finally, by Theorem 2.5.1, we
obtain that &7 = .o#/™? is a finite set. O

ReEMARK 2.5.6. The finiteness result of Corollary 2.5.5 is quite potent. It tells us that many
challenging problems can be reduced to studying finitely many monomial ideals. Just to mention
29
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one result: the celebrated proof of Hartshorne on the connectedness of Hilbert schemes inherently

relies on the fact that there are finitely many monomial ideals with the same Hilbert polynomial

(see [4, 10]).
2.6. Exercises
Exercise 2.1. Let I, | and K be monomial ideals in S. Show that 1+ (JNK) = (I+])N(I+XK).
Exercise 2.2. Let 1, | and K be monomial ideals in S. Show that 1N (]J+K) = (IN])+ (INK).

ExERcISE 2.3. Show that a monomial ideal 1 C S is a prime ideal if and only if | is generated

by a subset of the variables.
EXERrcISE 2.4. Let 1,] C S be monomial ideals. Show that 1:]J* is also a monomial ideal.
EXERCISE 2.5. Let 1 C S be a monomial ideal. Show that \/1 is also a monomial ideal.

ExXERcISE 2.6. Let f1,...,fin € S be polynomials such that (fi,...,fm) #S. Show that
f1,....,Tm form a regular sequence if and only if f1 # 0 and (f1,...,fi_1) : fi = (f1,...,fi_) for
i>2.

ExERciSE 2.7. Let 1 C S be a proper monomial ideal. Show that the following conditions are
equivalent:
(a) Iis Artinian.
(b) Lis m-primary where m = (x1,...,Xn) is the ideal generated by all variables.

(c) Foreach 1 <i<n, thereis some a; > 1 such that X{li €L

ExERcISE 2.8. Let P C S be a prime ideal and 1,] be two P-primary ideals. Show that IN] is

a P-primary ideal.

EXERCISE 2.9. Let X C Af and Y C Al be varieties determined by monomial ideals. Consider
the product variety Z =X x Y C Al x At = AR*™, Notice that Z C Ay ™™ is also determined by

a monomial ideal. Show that

dim(Z) = dim(X) +dim(Y) and deg(Z) = deg(X)-deg(Y).
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Grobner bases

The instructions for this chapter are:

e Read [3, Chapter 2].
e Read [5, Chapter 2].

Here we shall only present relevant results without proofs.

3.1. Monomial orders

Let X be a set. A partial order on X is a binary relation < over X which is reflexive,
antisymmetric and transitive. That is, for all a,b,c € X we have
e a < a (reflexivity);
e if a < band b < a, then a =b (antisymmetry);
e if a <bandb < c, then a < ¢ (transitivity).
It is common to write a < b if a < b and a #b. We also write a > b (a >b),if b< a
(b < a). A typical example of a partially ordered set is the set of all subsets of a given set ordered
by inclusion.
A partial order < on X is called a fotal order, if for any two elements a,b € X one has a < b
orb<a.
Let k be a field and S = K[x;,...,xn]. We now define a total order on Mon(S), the set of all

monomials in S, which respects the multiplicative structure on this set.

DerINITION 3.1.1. A monomial order on S is a total order < on Mon(S) with the properties:

(i) 1 <uforallu € Mon(S).
(ii) If u,v € Mon(S) and u < v, then uw < vw for all w € Mon(S).

A monomial order satisfies the following two conditions.

LemMma 3.1.2. Let < be a monomial order on S. Then the following holds:
(1) Ifu,v € Mon(S) with u|v, then u < .
(ii) (Artinian order) If w1, uy,... is a sequence of monomials with w; > W, > ---, then there

exists an integer m such that W = uy, foralli > m.

Proor. (i) If u | v, then there exists a monomial w such that v = uw. Since 1 < w, it follows
that u <wu=wv.
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(ii) Let M ={uy,uy,...}. By Dickson’s lemma (Theorem 2.2.2) this set has, with respect to
divisibility, only a finite number of minimal elements, say w;,,...,u;, with i; <i; <--- <i,;.
Let j be any integer > 1. Then there exists an integer 1 < k < v such that u;, | u;. By part (i),
this implies that u;, < ;. Hence w;, > w;. > 1 > u;,, and so uj = u; . Therefore we may

choose m = i;. ]

The fact that a monomial order induces a well-ordering on Mon(S) is assumed as a condition
in the definition of monomial orders given in [3, Definition 1, page 55]. This assumption is not

necessary as it follows from Dickson’s lemma.

RemaRrk 3.1.3. Let < be a monomial order. Then < is a well-ordering on Mon(S). This
means that every nonempty subset of Mon(S) has a smallest element under <. In other words, if
M C Mon(S) is nonempty, then there is w € M such that v > w for every v # w in M.

Proor. Let M C Mon(S) be a subset of monomials. By Dickson’s lemma (Theorem 2.2.2),
we have M™" = {u,...,1,}. Since a monomial order is multiplicative, for any u € M, we get
u >y, for some 1 <1< r. Therefore, by taking 1 to be the smallest element among {11, ..., u;}
with respect to the monomial order <, it follows that 1 is the smallest element of M. O

3.2. Basics of Grobner basis

(Read the recommended references.)

3.3. Hilbert basis theorem

(Read the recommended references.)

3.4. Division algorithm and Buchberger algorithm

(Read the recommended references.)

3.5. Exercises

Exercise 3.1. Let 1] C S be two ideals and < a monomial order on S. Let G, S’ be Grébner
bases of 1 and ], respectively, with respect to <. Prove that ifin-(g) and in-(g’) are relatively
prime for any g € G,q’ € G, then GU S’ is a Grobner basis of 1+].

ExERCcISE 3.2. Prove the following statements:

(i) There is a unique monomial order on K[x1].

(ii) Let n > 2. Then there are infinite many monomial orders on S = K[x1,...,Xn].

ExERciSE 3.3. Let I C S be an ideal and < be a monomial order on S. Show that in (\/T) -

inc (I).
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ExERcISE 3.4. Let I C S be an ideal and < be a monomial order on S. Prove the following

statements:
(1) Ifin. (1) is radical, then 1 is radical.

(ii) Ifin. (1) is prime, then 1 is prime.

ExERrcISE 3.5. Let fi,...,fm € S be polynomials and < be a monomial order on S. Assume

that in (f1),...,inc(fy,) is a regular sequence. Then prove the following statements:

@{) f1,...,Tm is a regular sequence.
(ii) fy,...,Tm is a Grobner basis of 1 = (f1,..., ).
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CHAPTER 4

The Algebra—Geometry Dictionary

4.1. Hilbert’s Nullstellensatz (a first quick algebraic proof)

See, e.g., [8, §5]. The proof typically follows by utilizing Zariski’s lemma.

4.2. Hilbert’s Nullstellensatz (a second proof)

We follow the proof from [1].
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