A NOTE ON THE COHOMOLOGY RINGS OF MATROID SCHUBERT VARIETIES
YAIRON CID-RUIZ

ABSTRACT. This note is prepared as a companion for a presentation in the event “Arbeitsgemeinschaft:
Combinatorial Hodge Theory” at the Mathematisches Forschungsinstitut Oberwolfach (MFO), Germany.
We aim to present a proof (as self-contained as possible) of the result of Huh and Wang [HW 17] establishing
that the cohomology ring of a matroid Schubert variety coincides with the graded Mdobius algebra.

1. INTRODUCTION

Let M be a simple matroid on the set [n] ={1,...,n} which is realizable over C. This means that there

exists a linear subspace L C C™ such that the rank function of M is given by
rankpg (S) = dim(TTg(L)) forall S C [n],

where s : C™ =P, C-¢5 — CS= ;e C-e; is the natural projection and ; = (0,..., 1,...,0) is the
j-th elementary basis vector. As introduced by Ardila and Boocher [AB16], the matroid Schubert variety
Ym = Ym L of M is the closure of L under the natural inclusions

L Ct=Cl'x-..xCl < Plx...xP! = (PY)".

Let £3}, be the lattice of flats of M. For each flat F € £3,, we introduce the symbol yr. Consider the
graded free Z-module

B*(M) := @B'(M) where B'(M):= P Z-yr.
120 FeLi,

We endow B®(M) with the structure of a commutative graded algebra over Z by setting

YF,VF, if rankpq (Fy) +rankpq (F2) = rankp (F; V')

YrYr, = .
0 otherwise,

and extending this by linearity. To simplify notation, we write yi,...,Yn instead of yq3,...,Y{n). Under

the above product operation, yg = 1 is the identity element and the equality yr = [ [; <1, yi holds for any

basis I of the flat F. Therefore, we can see B®*(M) as a quotient of the polynomial ring Z[yy,...,Yyn].
We are interested on the following remarkable result.

Theorem 1.1 (Huh-Wang [HW17, Theorem 14]; see Theorem 2.15). For a realizable matroid M, we
have the isomorphism of Z-algebras
B*(M) — H**(Ym.Z), yi+— hy,

where h; denotes the first Chern class of the line bundle Ov,, (e ).
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2. PROOF OF THE THEOREM

As before, M is a matroid on [n] which is realized by the linear subspace L C C™. Let C[x] =
Clx1,...,xn]) and C[x,z] = C[xi,...,Xn,Z1,...,Zn] be the coordinate rings C™ and (Pl)n. To simplify
notation, we often write P := (P1 )n. Let I(L) C C[x] be the vanishing ideal of the linear subspace L C C™.
The vanishing ideal of Ypq can be computed by the multi-homogenization

I(Ypm) = (fh | feI(L)) C Clx.z.

For any f € C[x], the multi-homogenization f™ is obtained by substituting x; — % and then clearing out
denominators.

Remark 2.1. Let X =V (f},...,fs) C C™. In general, it may be difficult to compute the equations of the
closure Y = X of X in (Pl)n. By saturating with respect to the variables z,...,z,,, we obtain

Y = v<(fh,...,f‘;): (f[]zi)x}).

Indeed, this can be deduced as follows. Let Y/ =V (fl',... . f') ¢ (P")™". Let Z=V(z;---z) C (Pl)Tl
andj: U= (Pl)TL \Z— (Pl)n be the natural immersion. We have that J—C% (Oy) =0 (the ideal 1(Y) of
the closure Y = X is saturated with respect to z1,. ..,z ) and that Oy lu = Oy |y (the dehomogenizations
of both Y and Y’ are both equal to X). Then we get the exact sequences

0— Oy =i« (Oy [y) = H5 (Oy) = 0 and 0 — HY (Oy/) — Oyr —ju (Oyr |y) = KL (Oy) =0

involving local cohomology sheaves (see [Har67, Corollary 1.9]). By comparing both exact sequences,
we obtain Oy = Oy//ﬂ{% (Oy), as required.

Remark 2.2. For any circuit C of the matroid M, there is a linear form } .- acxc in I(L), which is
unique up to multiplication by a nonzero scalar.

The following important result of Ardila and Boocher shows that the equations of Y, are completely
determined by the circuits of the matroid M.

Theorem 2.3 ([AB16, Theorem 1.3(a)]). Ym C (Pl)n is defined by the multi-homogenization of the

circuits of M. More precisely, we have
Ym = V( 2 cecAcXe [ laec\(ey2da ‘ C is a circuit of M ) .

To compute the the cohomology ring of Ynq, we use Borel-Moore homology and a certain algebraic
cell decomposition of Y, into affine spaces. This homology theory is quite successful for noncompact
topological spaces.

LetY C (F’1 ) ™ be an r-dimensional locally closed reduced subscheme'. A general fact is that Y can be
a embedded as a closed subspace of some real space R™. Then the Borel-Moore homology of Y can be
computed as

Hi(Y) = HFN (RN, RN\ Y;2),

IWe reserve the term variety for an integral and separated scheme of finite type over C.
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where the right hand side denotes relative singular cohomology with integer coefficients. For more details,
see [Ful97, Appendix B] and [Ful98, §19.1]. For an irreducible k-dimensional subvariety V C Y, we obtain

the fundamental class
V] i= u.(v) € Ha(Y),

where t, : Hoy (V) — Ha (Y) is pushforward map and 1y is the canonical generator of Hy (V) = Z.

Remark 2.4. Borel-Moore homology coincides with singular homology for compact and locally con-
tractible spaces. Therefore, if Y C (Pl)n is a closed subvariety, then we obtain Hq (Y) = H,(Y,Z).

Remark 2.5. By a standard abuse of notation, when Y is a smooth projective variety, we also denote by [V]
the fundamental class of V in H*¢(Y,Z) where ¢ = dim(Y) —dim(V) is the codimension of V. That is, we
take the image of [V] under the (Poincaré duality) isomorphism Hay (Y, Z) = Hy (Y) = H2rK) (Y,Z).

Remark 2.6. Recall that we have a natural short exact sequence
0 — ExtL(H;_(Y,Z2),Z) — H'(Y,Z) — Homgz (H;(Y,Z),Z) — 0

from the Universal Coefficient Theorem.
The next standard lemma will be the main tool in our approach.

Lemma 2.7 ([Ful97, Lemma 6, Appendix B]). Let Y =Y, D Yin—1 D --- D Y] D Yy = D be a sequence
of closed reduced subschemes. Assume that Y; \ Yi_ is a disjoint union of varieties Uy j each isomorphic
to an affine space CW1). Then the classes [Ui,ﬂ of the closures of these varieties give an additive basis

for the Borel-Moore homology groups He (Y) over Z .

We use the convention P! = CU oo with oo = (1:0). Hence, for any S C [n], the subvariety
Us := V(z1j¢S)\V(z1jes) c (PH"

can be identified with Ug = (H] cs C) X (H] ¢s oo) = CISI. More explicitly, in terms of coordinates, we
have

(1) Us = Spec (C [wj | €S]) x [ [ [Proj(Ch]) | = Spec(C[wjljeS])
jgs
where wi = x;/z;. The closure of Ug in (Pl)n is equal to
(P = (ITP") < ([Tee) < ()™
jes igs

Let Y4 := (Pl)TL and Yo := @, and for 1 <i<n,let

Y=V N (z15€8) ] < (P)"
SC[n]and |S|=n+1—1

U (P1)®.

SC[n]and |S|=1—1
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This is a sequence of closed reduced subschemes (Pl)n =Yhe1 D YnD - DY DYy=J and a simple
computation shows that

(2) Yirr\Yi = |_| Us.
SC[n]and |S|=1

Remark 2.8. From Lemma 2.7, we can deduce the well-known result that

Z[hl,,hn]

3) H** (P 2) = T2
(P)"2) (h?,...,h%)

where

Proof. By Lemma 2.9, (2) and the Universal Coefficient Theorem, the classes [(Pl)s} give a Z-basis
of H>*® (P,Z). It remains to determine the cup product on H>® (P,Z). Let Z; := V(z{) C P and Z{ =
V(xi) CP. LetS C [n] and write [n]\ S ={iy,...,1i.}. Since (Pl)S =Z;,N---NZ;_ can be obtained as a
sequence of transversal intersections, it follows that
S
[(Pl) } = [Zy] v -~ [Z; ] = hy - hygs
see [Ful97, page 213, eq. (9)]. Since Z; and Z! are rationally equivalent, [Ful98, Proposition 19.1.1]
implies that hy = [Zi] = [Z{] € H*(P, Z). Consequently, we obtain the vanishing
hi-hy = [Z{ - [Z{] =0
because Z; N Z{ = &. This completes the proof. 0

Let Y}Vl = Ym NY; and consider the sequence
YM =Y DY D - D YA D Yy =0
As a consequence of Theorem 2.3 we obtain the following.

Lemma 2.9. We have the equality
Yi]\;{_l \Yll\/[ ~ |_| CrankM(F)'
FeLy, and |F|=i
Moreover, for any S C [n], we have
crankm(S) i S is a flat of M

UsNYm =
%)} otherwise.

Proof. By intersecting (2) with Y, we obtain
Yir\Yi, = ] Usnvm.
SC[n]and |S|=1
Let C be a circuit of M and Fc = ) ccacxe]] deC\{c)Zd be the corresponding multi-homogeneous

polynomial vanishing on Yp; by Theorem 2.3, these polynomials determine Y. For any subset S C [n],
Fc yields a regular function on Ug (see (1)). We have the following three possibilities:
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(1) If C C S, then F¢ yields the linear form ZCGC acwc on Ug.
(ii) If|C\S| =1, then V(Fc)NUs = o.
(iii) If|C\ S| > 1, then V(F¢) D Us.
Finally, the result of the lemma follows from Remark 2.10 below. O

Remark 2.10. A subset F C [n] is a flat of the matroid M if and only if |C \ F| # 1 for any circuit C of the
matroid M.

Proof. (=) Suppose F is a flat. Assume by contradiction that there exists a circuit C with |C\ F| = 1.
Write C\ F ={c}. Then C\{c} C F. This implies ¢ € cl(F) = F, a contradiction.

(<) Let F C [n] such that [C\ F| # 1 for every circuit C. We must show that F is a flat. Take any
e € [n]\ F. Assume by contradiction that e € cI(F). Then there is a circuit C with e € C C FU{e}.
Therefore C\ F ={e}, a contradiction. O

By combining the previous results, we already get a basis for the cohomology ring of the matroid
Schubert variety Yn,.

Corollary 2.11. In odd degrees: for alli> 0, we have Hai 1 (Ym,Z) =0 and H***1 (Yp,Z) =0. In even

degrees: for all i > 0, we have

Hai(Ym.2) = @D z-[umYM] and H'(Ym.2) = @ Z &,
Fell, Fell,

where & is the dual of the basis element [UF N YM] € Hyi(Ym) =Hai(Ym, 2).
Proof. Due Lemma 2.7, Remark 2.4 and Lemma 2.9, it follows that He (Yap,Z) is generated freely as a

Z-module by the elements [UF N YM} for F a flat of M. On the other hand, since Hq (Ypm, Z) is Z-free, the
Universal Coefficient Theorem yields a natural isomorphism H*(Ypq,Z) = Homyz (Hi (Yam, Z),Z). O

For the rest of the note, let r := rank(M) be the rank of the matroid M. We also need the following
result by Ardila and Boocher.

Theorem 2.12 ([AB16, Theorem 1.3(c)]). The fundamental class of Yap in P = (Pl)TL is given by
v = Y [(P)F] e mx(P2).
B is a basis of M

Following Brion [Bri03], we say that Yn; is a multiplicity-free variety. In fact, by utilizing [Bri03,
Theorem 0.1], we obtain that Yn, is normal and arithmetically Cohen-Macaulay and, most importantly,
that it admits a flat degeneration to the reduced union

J )Yyt
B is a basis of M

of products of P'’s.

Let F be a flat of M. Notice that Ur N Y is isomorphic to the linear space TT¢(L) and that [UF N YM]

is the corresponding matroid Schubert variety in (Pl) " Hence the class of [UF ﬂYM} inP = (Pl)n is
given by

_— B
“4) [UF ﬂYM} = Z [(Pl) } € Harankp (F) (P-2)-

B is a basis of F
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We need the following technical lemma.

Lemma 2.13. Let A® be a graded algebra Z-algebra that is a finite free Z-module. Assume the following

conditions:

(a) rank (Ai) = |L}v[|for all i.
(b) Let Z[yy,...,yn] be a standard graded polynomial ring (i.e., deg(yi) =1). Let C* =Z[yy,...,ynl/J,
where J =71 47, is the sum of ideals

Iy = <U?l ynt | Z as > rankp (S) for some S C [n])
seS

and
I = (Uil “Yi Yy, Yje | {s.cL ikt and {ju, .. jk ) are bases of the same flat 0fM>.
(¢) There is a graded surjection t: C* — A®,
Then we actually have an isomorphism 1. C*® = AC.
Proof. Consider the exact sequence 0 — K — C®* — A® — 0. Let k be a field. Since A*® is Z-flat, we have
Tor?(A*,k) = 0, and so we get a short exact sequence
0 - K®zk = C*®zk = A*®zk — 0.
One can check that both graded k-algebras C* ®z k and A*® ®7 k have the same Hilbert function (also, see
Remark 2.14). Therefore K ®z k = 0 for any field k. This shows that K = 0, as required. U

Remark 2.14. Let K be a field and consider the polynomial ring K[yy,...,yn]. The set of polynomials

g = {y%yi} U {yil ---Yi, | {i1,...,1k} is a dependent set of M}
U {yil “Yi, —Yj, - Yj | {i1,..., it and {ji,...,ji } are bases of the same flat of M}

gives a universal Grobner basis of the ideal J@zk C K[y, ...,yn] determined by the ideal I C Z[yy,...,yn]
in Lemma 2.13. For details, see [LMMP25, Proposition 3.1].

Finally, we ready for the proof of the main result of this note.

Theorem 2.15. For a realizable matroid M, we have the isomorphism of Z-algebras
B.(M) i) HZ..(Y]\/[,Z), Yi—= hi,

where hy denotes the first Chern class of the line bundle Oy, (e3).

Proof. Let C®* = Z[yy,...,ynl/J be the graded algebra of Lemma 2.13. Notice that we have a graded

surjective map C® — B®(M). Due to Lemma 2.13, we obtain the isomorphism C*® = B*(M).
Lett:Ypm —P= (F’l)TL be the closed immersion. From Corollary 2.11 and (4), we obtain that the

pushforward map t, : He (YM,Z) < He (P,Z) is injective. Hence the Universal Coefficient Theorem

implies that the pullback map
v : H*(P,Z) - H*(Ym,Z)
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is surjective. The cohomology ring of P = (Pl)n is isomorphic to Z[h,...,hn]/ (hz,...,h%l) (see (3)).
Let o be a class in H'(P, Z). By the Universal Coefficient Theorem, we have the commutative diagram

~

H(P,Z) — Homgz (Ho(P,Z),Z)
cx (~ )"
H'(P,Z) = Homz (H;(P,Z),Z2)
L+ (L)
H (Yam.Z) = Homz (H; (Y. Z).Z).

Therefore, 1*(o¢) = 0 if and only if o« ~ 1, (f) =0 for all € Hi(Ym,Z).
Forany hy ---h;, € H?* (P, Z) and any flat F of M of rank k, the equation (4) yields
1 if{i,..., 1k} is a basis of F

Ry, - hi, A [UFHYM} -
0 otherwise.

By Corollary 2.11, the classes [m} with ranky (F) = k give a Z-basis of Hyy (Yam,Z). Therefore
the sets of elements
{h?l ~--hon | Z as > rankp (S) for some S C [n]}
seS
and

{hil ---hy, —hy, ---hy | {i1,...,1k} and {ji,...,ji} are bases of the same flat of M}

lie in the kernel of t*. Consequently, we obtain a graded surjective map
C®* —» Hz'.(YM,Z), Yi— hi.

Finally, Corollary 2.11 and Lemma 2.13 yield the isomorphism C® = H**(Yj1,Z). O

Remark 2.16. For the case of polymatroids, Crowley, Simpson and Wang [CSW24] gave a suitable gen-
eralization of Theorem 2.15 by utilizing the notions of polymatroid Schubert varieties and combinatorial
flats (which they introduced).
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