
A NOTE ON THE COHOMOLOGY RINGS OF MATROID SCHUBERT VARIETIES

YAIRON CID-RUIZ

ABSTRACT. This note is prepared as a companion for a presentation in the event “Arbeitsgemeinschaft:
Combinatorial Hodge Theory” at the Mathematisches Forschungsinstitut Oberwolfach (MFO), Germany.
We aim to present a proof (as self-contained as possible) of the result of Huh and Wang [HW17] establishing
that the cohomology ring of a matroid Schubert variety coincides with the graded Möbius algebra.

1. INTRODUCTION

Let M be a simple matroid on the set [n] = {1, . . . ,n} which is realizable over C. This means that there
exists a linear subspace L⊂ Cn such that the rank function of M is given by

rankM(S) = dim(ΠS(L)) for all S⊆ [n],

where ΠS :Cn =
⊕

j∈[n]C ·ej →CS =
⊕

j∈SC ·ej is the natural projection and ej = (0, . . . ,1, . . . ,0) is the
j-th elementary basis vector. As introduced by Ardila and Boocher [AB16], the matroid Schubert variety
YM = YM,L of M is the closure of L under the natural inclusions

L ↪→ Cn = C1 ×·· ·×C1 ↪→ P1 ×·· ·×P1 =
(
P1)n .

Let L•
M be the lattice of flats of M. For each flat F ∈ L•

M, we introduce the symbol yF. Consider the
graded free Z-module

B•(M) :=
⊕
i⩾0

Bi(M) where Bi(M) :=
⊕

F∈Li
M

Z ·yF.

We endow B•(M) with the structure of a commutative graded algebra over Z by setting

yF1yF2 =

yF1∨F2 if rankM(F1)+ rankM(F2) = rankM(F1 ∨F2)

0 otherwise,

and extending this by linearity. To simplify notation, we write y1, . . . ,yn instead of y{1}, . . . ,y{n}. Under
the above product operation, y∅ = 1 is the identity element and the equality yF =

∏
i∈IF

yi holds for any
basis IF of the flat F. Therefore, we can see B•(M) as a quotient of the polynomial ring Z[y1, . . . ,yn].

We are interested on the following remarkable result.

Theorem 1.1 (Huh-Wang [HW17, Theorem 14]; see Theorem 2.15). For a realizable matroid M, we
have the isomorphism of Z-algebras

B•(M)
∼=−→ H2·•(YM,Z), yi 7→ hi,

where hi denotes the first Chern class of the line bundle OYM
(ei).
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2. PROOF OF THE THEOREM

As before, M is a matroid on [n] which is realized by the linear subspace L ⊂ Cn. Let C[x] =
C[x1, . . . ,xn] and C[x,z] = C[x1, . . . ,xn,z1, . . . ,zn] be the coordinate rings Cn and

(
P1
)n. To simplify

notation, we often write P :=
(
P1
)n. Let I(L)⊂C[x] be the vanishing ideal of the linear subspace L⊂Cn.

The vanishing ideal of YM can be computed by the multi-homogenization

I(YM) =
(
fh | f ∈ I(L)

)
⊂ C[x,z].

For any f ∈ C[x], the multi-homogenization fh is obtained by substituting xi 7→ xi

zi
and then clearing out

denominators.

Remark 2.1. Let X = V (f1, . . . ,fs)⊂ Cn. In general, it may be difficult to compute the equations of the
closure Y = X of X in

(
P1
)n. By saturating with respect to the variables z1, . . . ,zn, we obtain

Y = V

((
fh1 , . . . ,fhs

)
:

(
n∏

i=1

zi

)∞)
.

Indeed, this can be deduced as follows. Let Y ′ = V
(
fh1 , . . . ,fhs

)
⊂
(
P1
)n. Let Z = V(z1 · · ·zn)⊂

(
P1
)n

and j : U =
(
P1
)n

\Z→
(
P1
)n be the natural immersion. We have that H0

Z (OY) = 0 (the ideal I(Y) of
the closure Y = X is saturated with respect to z1, . . . ,zn) and that OY |U

∼=OY ′ |U (the dehomogenizations
of both Y and Y ′ are both equal to X). Then we get the exact sequences

0 → OY → j∗ (OY |U)→H1
Z (OY)→ 0 and 0 →H0

Z (OY ′)→ OY ′ → j∗ (OY ′ |U)→H1
Z (OY ′)→ 0

involving local cohomology sheaves (see [Har67, Corollary 1.9]). By comparing both exact sequences,
we obtain OY

∼= OY ′/H0
Z (OY ′), as required.

Remark 2.2. For any circuit C of the matroid M, there is a linear form
∑

c∈Cacxc in I(L), which is
unique up to multiplication by a nonzero scalar.

The following important result of Ardila and Boocher shows that the equations of YM are completely
determined by the circuits of the matroid M.

Theorem 2.3 ([AB16, Theorem 1.3(a)]). YM ⊂
(
P1
)n is defined by the multi-homogenization of the

circuits of M. More precisely, we have

YM = V
( ∑

c∈Cacxc
∏

d∈C\{c} zd C is a circuit of M
)

.

To compute the the cohomology ring of YM, we use Borel-Moore homology and a certain algebraic
cell decomposition of YM into affine spaces. This homology theory is quite successful for noncompact
topological spaces.

Let Y ⊂
(
P1
)n be an r-dimensional locally closed reduced subscheme1. A general fact is that Y can be

a embedded as a closed subspace of some real space RN. Then the Borel-Moore homology of Y can be
computed as

Hi(Y) ∼= HN−i
(
RN,RN \Y;Z

)
,

1We reserve the term variety for an integral and separated scheme of finite type over C.
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where the right hand side denotes relative singular cohomology with integer coefficients. For more details,
see [Ful97, Appendix B] and [Ful98, §19.1]. For an irreducible k-dimensional subvariety V ⊂ Y, we obtain
the fundamental class

[V] := ι∗ (ηV) ∈ H2k(Y),

where ι∗ : H2k(V)→ H2k(Y) is pushforward map and ηV is the canonical generator of H2k(V) = Z.

Remark 2.4. Borel-Moore homology coincides with singular homology for compact and locally con-
tractible spaces. Therefore, if Y ⊂

(
P1
)n is a closed subvariety, then we obtain H•(Y) = H•(Y,Z).

Remark 2.5. By a standard abuse of notation, when Y is a smooth projective variety, we also denote by [V]

the fundamental class of V in H2c(Y,Z) where c= dim(Y)−dim(V) is the codimension of V . That is, we

take the image of [V] under the (Poincaré duality) isomorphism H2k(Y,Z) = H2k(Y)
∼=−→ H2(r−k)(Y,Z).

Remark 2.6. Recall that we have a natural short exact sequence

0 → Ext1Z(Hi−1(Y,Z),Z) → Hi(Y,Z) → HomZ (Hi(Y,Z),Z) → 0

from the Universal Coefficient Theorem.

The next standard lemma will be the main tool in our approach.

Lemma 2.7 ([Ful97, Lemma 6, Appendix B]). Let Y = Ym ⊃ Ym−1 ⊃ ·· · ⊃ Y1 ⊃ Y0 =∅ be a sequence
of closed reduced subschemes. Assume that Yi \Yi−1 is a disjoint union of varieties Ui,j each isomorphic
to an affine space Cn(i,j). Then the classes

[
Ui,j

]
of the closures of these varieties give an additive basis

for the Borel-Moore homology groups H•(Y) over Z .

We use the convention P1 = C∪∞ with ∞= (1 : 0). Hence, for any S⊆ [n], the subvariety

US := V
(
zj | j /∈ S

)
\V
(
zj | j ∈ S

)
⊂
(
P1)n

can be identified with US
∼=
(∏

j∈SC
)
×
(∏

j/∈S∞) ∼= C|S|. More explicitly, in terms of coordinates, we
have

(1) US
∼= Spec

(
C
[
wj | j ∈ S

])
×

∏
j/∈S

Proj(C[xj])

 ∼= Spec
(
C
[
wj | j ∈ S

])
where wi = xi/zi. The closure of US in

(
P1
)n is equal to(

P1)S :=
(∏
j∈S

P1)× (∏
j/∈S

∞) ⊂
(
P1)n.

Let Yn+1 :=
(
P1
)n and Y0 :=∅, and for 1 ⩽ i⩽ n, let

Yi := V

 ⋂
S⊆[n] and |S|=n+1−i

(
zj | j ∈ S

) ⊂
(
P1)n

=
⋃

S⊆[n] and |S|=i−1

(
P1)S .
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This is a sequence of closed reduced subschemes
(
P1
)n

= Yn+1 ⊃ Yn ⊃ ·· · ⊃ Y1 ⊃ Y0 =∅ and a simple
computation shows that

(2) Yi+1 \Yi =
⊔

S⊆[n] and |S|=i

US.

Remark 2.8. From Lemma 2.7, we can deduce the well-known result that

(3) H2·• ((P1)n,Z
)

∼=
Z[h1, . . . ,hn](
h2

1, . . . ,h2
n

)
where

hi =
[
P1 ×·· ·× ∞︸︷︷︸

i−th

×·· ·P1].
Proof. By Lemma 2.9, (2) and the Universal Coefficient Theorem, the classes

[(
P1
)S] give a Z-basis

of H2·• (P,Z). It remains to determine the cup product on H2·• (P,Z). Let Zi := V(zi) ⊂ P and Z ′
i :=

V(xi)⊂ P. Let S⊆ [n] and write [n]\S= {i1, . . . , ic}. Since
(
P1
)S

= Zi1 ∩·· ·∩Zic can be obtained as a
sequence of transversal intersections, it follows that[(

P1)S] = [Zi1 ]⌣ · · ·⌣ [Zic ] = hi1 · · ·hic ;

see [Ful97, page 213, eq. (9)]. Since Zi and Z ′
i are rationally equivalent, [Ful98, Proposition 19.1.1]

implies that hi = [Zi] =
[
Z ′
i

]
∈ H2(P,Z). Consequently, we obtain the vanishing

hi ·hi = [Zi]⌣
[
Z ′
i

]
= 0

because Zi∩Z ′
i =∅. This completes the proof. □

Let Yi
M = YM∩Yi and consider the sequence

YM = Yn+1
M ⊃ Yn

M ⊃ ·· · ⊃ Y1
M ⊃ Y0

M = ∅.

As a consequence of Theorem 2.3 we obtain the following.

Lemma 2.9. We have the equality

Yi+1
M \Yi

M
∼=

⊔
F∈L•

M and |F|=i

CrankM(F).

Moreover, for any S⊆ [n], we have

US∩YM =

CrankM(S) if S is a flat of M

∅ otherwise.

Proof. By intersecting (2) with YM, we obtain

Yi+1
M \Yi

M =
⊔

S⊆[n] and |S|=i

US∩YM.

Let C be a circuit of M and FC =
∑

c∈Cacxc
∏

d∈C\{c} zd be the corresponding multi-homogeneous
polynomial vanishing on YM; by Theorem 2.3, these polynomials determine YM. For any subset S⊆ [n],
FC yields a regular function on US (see (1)). We have the following three possibilities:
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(i) If C⊆ S, then FC yields the linear form
∑

c∈Cacwc on US.
(ii) If |C\S|= 1, then V(FC)∩US =∅.

(iii) If |C\S|⩾ 1, then V(FC)⊃US.

Finally, the result of the lemma follows from Remark 2.10 below. □

Remark 2.10. A subset F⊆ [n] is a flat of the matroid M if and only if |C\F| ̸= 1 for any circuit C of the
matroid M.

Proof. (⇒) Suppose F is a flat. Assume by contradiction that there exists a circuit C with |C \ F| = 1.
Write C\F= {c}. Then C\ {c}⊆ F. This implies c ∈ cl(F) = F, a contradiction.

(⇐) Let F ⊆ [n] such that |C \ F| ̸= 1 for every circuit C. We must show that F is a flat. Take any
e ∈ [n] \ F. Assume by contradiction that e ∈ cl(F). Then there is a circuit C with e ∈ C ⊆ F∪ {e}.
Therefore C\F= {e}, a contradiction. □

By combining the previous results, we already get a basis for the cohomology ring of the matroid
Schubert variety YM.

Corollary 2.11. In odd degrees: for all i⩾ 0, we have H2i+1(YM,Z) = 0 and H2i+1(YM,Z) = 0. In even
degrees: for all i⩾ 0, we have

H2i(YM,Z) ∼=
⊕

F∈Li
M

Z ·
[
UF∩YM

]
and H2i(YM,Z) ∼=

⊕
F∈Li

M

Z ·ξF,

where ξF is the dual of the basis element
[
UF∩YM

]
∈ H2i(YM) = H2i(YM,Z).

Proof. Due Lemma 2.7, Remark 2.4 and Lemma 2.9, it follows that H•(YM,Z) is generated freely as a
Z-module by the elements

[
UF∩YM

]
for F a flat of M. On the other hand, since H•(YM,Z) is Z-free, the

Universal Coefficient Theorem yields a natural isomorphism Hi(YM,Z) ∼= HomZ (Hi(YM,Z),Z). □

For the rest of the note, let r := rank(M) be the rank of the matroid M. We also need the following
result by Ardila and Boocher.

Theorem 2.12 ([AB16, Theorem 1.3(c)]). The fundamental class of YM in P =
(
P1
)n is given by

[YM] =
∑

B is a basis of M

[(
P1)B] ∈ H2r

(
P,Z

)
.

Following Brion [Bri03], we say that YM is a multiplicity-free variety. In fact, by utilizing [Bri03,
Theorem 0.1], we obtain that YM is normal and arithmetically Cohen-Macaulay and, most importantly,
that it admits a flat degeneration to the reduced union⋃

B is a basis of M

(
P1)B ⊂

(
P1)n

of products of P1’s.
Let F be a flat of M. Notice that UF∩YM is isomorphic to the linear space ΠF(L) and that

[
UF∩YM

]
is the corresponding matroid Schubert variety in

(
P1
)F. Hence the class of

[
UF∩YM

]
in P =

(
P1
)n is

given by

(4)
[
UF∩YM

]
=

∑
B is a basis of F

[(
P1)B] ∈ H2rankM(F)

(
P,Z

)
.
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We need the following technical lemma.

Lemma 2.13. Let A• be a graded algebra Z-algebra that is a finite free Z-module. Assume the following
conditions:

(a) rank
(
Ai
)
= |Li

M| for all i.
(b) Let Z[y1, . . . ,yn] be a standard graded polynomial ring (i.e., deg(yi) = 1). Let C• = Z[y1, . . . ,yn]/I,

where I= I1 + I2 is the sum of ideals

I1 =

(
ya1

1 · · ·yan
n |

∑
s∈S

as > rankM(S) for some S⊆ [n]

)
and

I2 =
(
yi1 · · ·yik −yj1 · · ·yjk | {i1, . . . , ik} and {j1, . . . , jk} are bases of the same flat of M

)
.

(c) There is a graded surjection π : C• ↠A•.

Then we actually have an isomorphism π : C• ∼=−→A•.

Proof. Consider the exact sequence 0 → K→C• →A• → 0. Let k be a field. Since A• is Z-flat, we have
TorZ

1 (A
•,k) = 0, and so we get a short exact sequence

0 → K⊗Z k → C•⊗Z k → A•⊗Z k → 0.

One can check that both graded k-algebras C•⊗Z k and A•⊗Z k have the same Hilbert function (also, see
Remark 2.14). Therefore K⊗Z k = 0 for any field k. This shows that K= 0, as required. □

Remark 2.14. Let k be a field and consider the polynomial ring k[y1, . . . ,yn]. The set of polynomials

G =
{
y2

1, . . . ,y2
n

}
∪

{
yi1 · · ·yik | {i1, . . . , ik} is a dependent set of M

}
∪

{
yi1 · · ·yik −yj1 · · ·yjk | {i1, . . . , ik} and {j1, . . . , jk} are bases of the same flat of M

}
gives a universal Gröbner basis of the ideal I⊗Z k⊂ k[y1, . . . ,yn] determined by the ideal I⊂Z[y1, . . . ,yn]

in Lemma 2.13. For details, see [LMMP25, Proposition 3.1].

Finally, we ready for the proof of the main result of this note.

Theorem 2.15. For a realizable matroid M, we have the isomorphism of Z-algebras

B•(M)
∼=−→ H2·•(YM,Z), yi 7→ hi,

where hi denotes the first Chern class of the line bundle OYM
(ei).

Proof. Let C• = Z[y1, . . . ,yn]/I be the graded algebra of Lemma 2.13. Notice that we have a graded

surjective map C• ↠ B•(M). Due to Lemma 2.13, we obtain the isomorphism C• ∼=−→ B•(M).
Let ι : YM ↪→ P =

(
P1
)n be the closed immersion. From Corollary 2.11 and (4), we obtain that the

pushforward map ι∗ : H• (YM,Z) ↪→ H• (P,Z) is injective. Hence the Universal Coefficient Theorem
implies that the pullback map

ι∗ : H• (P,Z) ↠ H• (YM,Z)



A NOTE ON THE COHOMOLOGY RINGS OF MATROID SCHUBERT VARIETIES 7

is surjective. The cohomology ring of P =
(
P1
)n is isomorphic to Z[h1, . . . ,hn]/

(
h2

1, . . . ,h2
n

)
(see (3)).

Let α be a class in Hi(P,Z). By the Universal Coefficient Theorem, we have the commutative diagram

H0(P,Z) HomZ (H0(P,Z),Z)

Hi(P,Z) HomZ (Hi(P,Z),Z)

Hi(YM,Z) HomZ (Hi(YM,Z),Z) .

∼=

∼=

∼=

⌣ α

ι∗

(⌢ α)∗

(ι∗)
∗

Therefore, ι∗(α) = 0 if and only if α⌢ ι∗(β) = 0 for all β ∈ Hi(YM,Z).
For any hi1 · · ·hik ∈ H2k (P,Z) and any flat F of M of rank k, the equation (4) yields

hi1 · · ·hik ⌢
[
UF∩YM

]
=

1 if {i1, . . . , ik} is a basis of F

0 otherwise.

By Corollary 2.11, the classes
[
UF∩YM

]
with rankM(F) = k give a Z-basis of H2k(YM,Z). Therefore

the sets of elements {
ha1

1 · · ·han
n |

∑
s∈S

as > rankM(S) for some S⊆ [n]
}

and {
hi1 · · ·hik −hj1 · · ·hjk | {i1, . . . , ik} and {j1, . . . , jk} are bases of the same flat of M

}
lie in the kernel of ι∗. Consequently, we obtain a graded surjective map

C• ↠ H2·•(YM,Z), yi 7→ hi.

Finally, Corollary 2.11 and Lemma 2.13 yield the isomorphism C• ∼=−→ H2·•(YM,Z). □

Remark 2.16. For the case of polymatroids, Crowley, Simpson and Wang [CSW24] gave a suitable gen-
eralization of Theorem 2.15 by utilizing the notions of polymatroid Schubert varieties and combinatorial
flats (which they introduced).
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